Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The myosin coiled-coil is a truly elastic protein structure

Abstract

Coiled-coils occur in a variety of proteins involved in mechanical and structural tasks in the cell. Their mechanical properties are important in various contexts ranging from hair elasticity1 to synaptic fusion2. Beyond their importance in biology, coiled-coils have also attracted interest as programmable protein sequences for the design of novel hydrogels and materials3. We have studied the elastic properties of the myosin coiled-coil at the single molecule level. The coiled-coil undergoes a massive structural transition at forces between 20 and 25 pN where the coil extends to about 2.5 times its original length. Unlike all other proteins investigated mechanically so far, this transition is reversible on a timescale of less than a second, making the coiled-coil a truly elastic protein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Extensibility of the myosin coiled-coil.
Figure 2: Elasticity of the myosin coiled-coil.
Figure 3: Two-state model of coiled-coil elasticity (see Methods).

Similar content being viewed by others

References

  1. Hearle, J.W. A critical review of the structural mechanics of wool and hair fibres. Int. J. Biol. Macromol. 27, 123–138 (2000).

    Article  CAS  Google Scholar 

  2. Jahn, R. & Grubmüller, H. Membrane fusion. Curr. Opin. Cell Biol. 14, 488–498 (2002).

    Article  CAS  Google Scholar 

  3. Petka, W.A., Harden, J.L., McGrath, K.P., Wirtz, D. & Tirrell, D.A. Reversible hydrogels from self-assembling artificial proteins. Science 281, 389–392 (1998).

    Article  CAS  Google Scholar 

  4. Burkhard, P., Stetefeld, J. & Strelkov, S.V. Coiled coils: a highly versatile protein folding motif. Trends Cell Biol. 11, 82–88 (2001).

    Article  CAS  Google Scholar 

  5. Smith, S.B., Cui, Y. & Bustamante, C. Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271, 795–798 (1996).

    Article  CAS  Google Scholar 

  6. Cluzel, P. et al. DNA: an extensible molecule. Science 271, 792–794 (1996).

    Article  CAS  Google Scholar 

  7. Rief, M., Clausen-Schaumann, H. & Gaub, H.E. Sequence-dependent mechanics of single DNA molecules. Nature Struct. Biol. 6, 346–349 (1999).

    Article  CAS  Google Scholar 

  8. Rief, M., Oesterhelt, F., Heymann, B. & Gaub, H.E. Single molecule force spectroscopy on polysaccharides by AFM. Science 275, 1295–1297 (1997).

    Article  CAS  Google Scholar 

  9. Marszalek, P.E., Oberhauser, A.F., Pang, Y.P. & Fernandez, J.M. Polysaccharide elasticity governed by chair-boat transitions of the glucopyranose ring. Nature 396, 661–664 (1998).

    Article  CAS  Google Scholar 

  10. Kellermayer, M.S., Smith, S.B., Granzier, H.L. & Bustamante, C. Folding-unfolding transitions in single titin molecules characterized with laser tweezers. Science 276, 1112–1116 (1997).

    Article  CAS  Google Scholar 

  11. Tskhovrebova, L., Trinick, J., Sleep, J.A. & Simmons, R.M. Elasticity and unfolding of single molecules of the giant muscle protein titin. Nature 387, 308–312 (1997).

    Article  CAS  Google Scholar 

  12. Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J.M. & Gaub, H.E. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276, 1109–1112 (1997).

    Article  CAS  Google Scholar 

  13. Marszalek, P.E. et al. Mechanical unfolding intermediates in titin modules. Nature 402, 100–103 (1999).

    Article  CAS  Google Scholar 

  14. Sellers, J.R. Myosins (Oxford Univ. Press, Oxford, 1999).

    Google Scholar 

  15. Fisher, T.E., Marszalek, P.E. & Fernandez, J.M. Stretching single molecules into novel conformations using the atomic force microscope. Nature Struct. Biol. 7, 719–724 (2000).

    Article  CAS  Google Scholar 

  16. Stafford, W.F. III Effect of various anions on the stability of the coiled coil of skeletal muscle myosin. Biochemistry 24, 3314–3321 (1985).

    Article  CAS  Google Scholar 

  17. Marko, J.F. DNA under high tension: Overstretching, undertwisting and relaxation dynamics. Phys. Rev. 57, 276–283 (1998).

    Google Scholar 

  18. Ahsan, A., Rudnick, J. & Bruinsma, R. Elasticity theory of the B-DNA to S-DNA transition. Biophys. J. 74, 132–137 (1998).

    Article  CAS  Google Scholar 

  19. Rief, M., Fernandez, J.M. & Gaub, H.E. Elastically coupled two-level-systems as a model for biopolymer extensibility. Phys. Rev. Lett. 81, 4764–4767 (1998).

    Article  CAS  Google Scholar 

  20. Swenson, C.A. & Stellwagen, N.C. Flexibility of smooth and skeletal tropomyosins. Biopolymers 28, 955–963 (1989).

    Article  CAS  Google Scholar 

  21. Rief, M., Pascual, J., Saraste, M. & Gaub, H.E. Single molecule force spectroscopy of spectrin repeats: low unfolding forces in helix bundles. J. Mol. Biol. 286, 553–561 (1999).

    Article  CAS  Google Scholar 

  22. Oberhauser, A.F., Marszalek, P.E., Erickson, H.P. & Fernandez, J.M. The molecular elasticity of the extracellular matrix protein tenascin. Nature 393, 181–185 (1998).

    Article  CAS  Google Scholar 

  23. Rief, M., Gautel, M. & Gaub, H.E. Unfolding forces of titin and fibronectin domains directly measured by AFM. Adv. Exp. Med. Biol. 481, 129–136 (2000).

    Article  CAS  Google Scholar 

  24. Smith, B.L. et al. Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature 399, 761–763 (1999).

    Article  CAS  Google Scholar 

  25. Thompson, J.B. et al. Bone indentation recovery time correlates with bond reforming time. Nature 414, 773–776 (2001).

    Article  CAS  Google Scholar 

  26. Baker, D. A surprising simplicity to protein folding. Nature 405, 39–42 (2000).

    Article  CAS  Google Scholar 

  27. Tsong, T.Y., Karr, T. & Harrington, W.F. Rapid helix–coil transitions in the S-2 region of myosin. Proc. Natl Acad. Sci. USA 76, 1109–1113 (1979).

    Article  CAS  Google Scholar 

  28. Lauzon, A.M., Fagnant, P.M., Warshaw, D.M. & Trybus, K.M. Coiled-coil unwinding at the smooth muscle myosin head-rod junction is required for optimal mechanical performance. Biophys. J. 80, 1900–1904 (2001).

    Article  CAS  Google Scholar 

  29. Thormählen, M., Marx, A., Sack, S. & Mandelkow, E. The coiled-coil helix in the neck of kinesin. J. Struct. Biol. 122, 30–41 (1998).

    Article  Google Scholar 

  30. Grummt, M. et al. Importance of a flexible hinge near the motor domain in kinesin-driven motility. EMBO J. 17, 5536–5542 (1998).

    Article  CAS  Google Scholar 

  31. Margossian, S.S. & Lowey, S. Preparation of myosin and its subfragments from rabbit skeletal muscle. Method. Enzymol. 85, 55–71 (1982).

    Article  CAS  Google Scholar 

  32. Uyeda, T.Q. & Spudich, J.A. A functional recombinant myosin II lacking a regulatory light chain-binding site. Science 262, 1867–1870 (1993).

    Article  CAS  Google Scholar 

  33. Bustamante, C., Marko, J.F., Siggia, E.D. & Smith, S. Entropic elasticity of lambda-phage DNA. Science 265, 1599–1600 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Gaub, H. Grubmüller and J. Trinick for helpful discussions. This work was supported by an SFB413 grant of the DFG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Rief.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwaiger, I., Sattler, C., Hostetter, D. et al. The myosin coiled-coil is a truly elastic protein structure. Nature Mater 1, 232–235 (2002). https://doi.org/10.1038/nmat776

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat776

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing