Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites

A Corrigendum to this article was published on 01 December 2002

Abstract

The mechanical failure of hybrid materials made from polymers and single-wall carbon nanotubes (SWNT) is primarily attributed to poor matrix–SWNT connectivity and severe phase segregation. Both problems can be successfully mitigated when the SWNT composite is made following the protocol of layer-by-layer assembly. This deposition technique prevents phase segregation of the polymer/SWNT binary system, and after subsequent crosslinking, the nanometre-scale uniform composite with SWNT loading as high as 50 wt% can be obtained. The free-standing SWNT/polyelectrolyte membranes delaminated from the substrate were found to be exceptionally strong with a tensile strength approaching that of hard ceramics. Because of the lightweight nature of SWNT composites, the prepared free-standing membranes can serve as components for a variety of long-lifetime devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural characterization of SWNT multilayers.
Figure 2: Electron microscopy of the rupture region in SWNT multilayers.
Figure 3: Examination by TEM of the homogeneity of the SWNT LBL film.
Figure 4: Typical tensile strength curves of the SWNT LBL films.

Similar content being viewed by others

References

  1. Wong, E.W., Sheehan, P.E. & Lieber, C.M. Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277, 1971–1975 (1997).

    Article  CAS  Google Scholar 

  2. Popov, V.N., Van Doren, V.E. & Balkanski, M. Elastic properties of single-walled carbon nanotubes. Phys. Rev. B 61, 3078–3084 (2000).

    Article  CAS  Google Scholar 

  3. Baughman, R.H. et al. Carbon nanotube actuators. Science 284, 1340–1344 (1999).

    Article  CAS  Google Scholar 

  4. Qian, D., Dickey, E.C., Andrews, R. & Rantell, T. Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl. Phys. Lett. 76, 2868–2870 (2000).

    Article  CAS  Google Scholar 

  5. Yu, M.F. et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287, 637–640 (2000).

    Article  CAS  Google Scholar 

  6. Salvetat, J.P. et al. Elastic modulus of ordered and disordered multiwalled carbon nanotubes. Adv. Mater. 11, 161–165 (1999).

    Article  CAS  Google Scholar 

  7. Shaffer, M.S.P. & Windle, A.H. Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites. Adv. Mater. 11, 937–941 (1999).

    Article  CAS  Google Scholar 

  8. Haggenmueller, R., Gommans, H.H., Rinzler, A.G., Fischer, J.E. & Winey, K.I. Aligned single-wall carbon nanotubes in composites by melt processing methods. Chem. Phys. Lett. 330, 219–225 (2000).

    Article  CAS  Google Scholar 

  9. Watts, P.C.P. et al. A low resistance boron-doped carbon nanotube-polystyrene composite. J. Mater. Chem. 11, 2482–2488 (2001).

    Article  CAS  Google Scholar 

  10. Vigolo, B. et al. Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 290, 1331–1334 (2000).

    Article  CAS  Google Scholar 

  11. Salvetat, J.P. et al. Elastic and shear moduli of single-walled carbon nanotube ropes. Phys. Rev. Lett. 82, 944–947 (1999).

    Article  CAS  Google Scholar 

  12. Chen, J. et al. Dissolution of full-length single-walled carbon nanotubes. J. Phys. Chem. B 105, 2525–2528 (2001).

    Article  CAS  Google Scholar 

  13. Frankland, S.J.V., Caglar, A., Brenner, D.W. & Griebel, M. Molecular simulation of the influence of chemical crosslinks on the shear strength of carbon nanotube-polymer interfaces. J. Phys. Chem. B 106, 3046–3048 (2002).

    Article  CAS  Google Scholar 

  14. Star, A. et al. Preparation and properties of polymer-wrapped single-walled carbon nanotubes. Angew. Chem. Int. Edn Engl. 40, 1721–1725 (2001).

    Article  CAS  Google Scholar 

  15. Decher, G. Fuzzy nanoassemblies toward layered polymeric multicomposites. Science 277, 1232–1237 (1997).

    Article  CAS  Google Scholar 

  16. Wu, A., Yoo, D., Lee, J.K. & Rubner, M.F. Solid-state light-emitting devices based on the tris-chelated ruthenium(II) complex: 3. High efficiency devices via a layer-by-layer molecular-level blending approach. J. Am. Chem. Soc. 121, 4883–4891 (1999).

    Article  CAS  Google Scholar 

  17. Mamedov, A.A., Belov, A., Giersig, M., Mamedova, N.N. & Kotov, N.A. Nanorainbows. Graded semiconductor films from quantum dots. J. Am. Chem. Soc. 123, 7738–7739 (2001).

    Article  CAS  Google Scholar 

  18. Mamedov, A.A., Guldi, D.M., Prato, M. & Kotov, N.A. Layer-by-layer assembly of carbon nanotubes. Proceedings of 223rd ACS National Meeting, Orlando, Florida, United States, April 7–11, 2002, COLL-173, ACS, Washington D.C.

  19. Rouse, J.H., Ounaies, Z., Lellehei, P.T. & Siochi, E.J. Incorporation of carbon nanotubes within stepwise assembled polyelectrolyte films. Proceedings of 223rd ACS National Meeting, Orlando, Florida, United States, April 7–11, 2002, COLL-169, ACS, Washington D.C.

  20. Mamedov, A.A. & Kotov, N.A. Free-standing layer-by-layer assembled films of magnetite nanoparticles. Langmuir 16, 5530–5533 (2000).

    Article  CAS  Google Scholar 

  21. Mawhinney, D.B. et al. Surface defect site density on single walled carbon nanotubes by titration. Chem. Phys. Lett. 324, 213–216 (2000).

    Article  CAS  Google Scholar 

  22. Rols, S. et al. Diameter distribution of single wall carbon nanotubes in nanobundles. Eur. Phys. J. B 18, 201–205 (2000).

    Article  CAS  Google Scholar 

  23. Westenhoff, S. & Kotov, N.A. Quantum dot on a rope. J. Am. Chem. Soc. 124, 2448–2449 (2002).

    Article  CAS  Google Scholar 

  24. Sullivan, D.M. & Bruening, M.L. Ultrathin, ion-selective polyimide membranes prepared from layered polyelectrolytes. J. Am. Chem. Soc. 123, 11805–11806 (2001).

    Article  CAS  Google Scholar 

  25. Li, F., Cheng, H.M., Bai, S., Su, G. & Dresselhaus, M.S. Tensile strength of single-walled carbon nanotubes directly measured from their macroscopic ropes. Appl. Phys. Lett. 77, 3161–3163 (2000).

    Article  CAS  Google Scholar 

  26. Thompson, J.B. et al. Bone indentation recovery time correlates with bond reforming time. Nature 414, 773–776 (2001).

    Article  CAS  Google Scholar 

  27. Smith, B.L. et al. Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature 399, 761–763 (1999).

    Article  CAS  Google Scholar 

  28. CRC Materials Science and Engineering Handbook (CRC, Boca Raton, Florida, USA, 1992).

  29. Fu, S.Y. et al. Hybrid effects on tensile properties of hybrid short-glass-fiber- and short-carbon-fiber-reinforced polypropylene composites. J. Mater. Sci. 36, 1243–1251 (2001).

    Article  CAS  Google Scholar 

  30. Yu, M.F., Files, B.S., Arepalli, S. & Ruoff, R.S. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84, 5552–5555 (2000).

    Article  CAS  Google Scholar 

  31. Garg, A. & Sinnott, S.B. Effect of chemical functionalization on the mechanical properties of carbon nanotubes. Chem. Phys. Lett. 295, 273–278 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

N.A.K. thanks the financial support of this project from National Science Foundation (NSF)-CAREER, NSF-Biophotonics, Air Force Office of Scientific Research (AFOSR), Oklahoma Center for Advancement of Science and Technology (OCAST) and Nomadics. The authors are grateful to John Ostrander for polyelectrolyte film stretching, Phoebe Doss for assistance with TEM and SEM, and Zhandos Utegulov for carrying out the Raman scattering measurements. N.A.K. is indebted to Anatoli Kachurin (Sciperio, Stillwater, Oklahoma) for elemental analysis of the composites. The authors also thank Warren Ford (Oklahoma State University) for helpful discussions. Part of this work was carried out with support from the Office of Basic Energy Sciences of the US Department of Energy (NBRL 4410) and the European Union Human Potential Network, Chemical Functionalization of Carbon Nanotubes (FUNCARS), Ministero dell'Università e della Ricerca, Italy, Consiglio Nazionale delle Ricerche programme Materiali Innovativi (legge 95/95).

Correspondence and requests for materials should be addressed to N.A.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas A. Kotov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mamedov, A., Kotov, N., Prato, M. et al. Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites. Nature Mater 1, 190–194 (2002). https://doi.org/10.1038/nmat747

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat747

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing