Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Experimentally realizable devices for controlling the motion of magnetic flux quanta in anisotropic superconductors

Abstract

A new generation of microscopic ratchet systems is currently being developed for controlling the motion of electrons and fluxons, as well as for particle separation and electrophoresis. Virtually all of these use static spatially asymmetric potential energies to control transport properties. Here we propose completely new types of ratchet-like systems that do not require fixed spatially asymmetric potentials in the samples. As specific examples of this novel general class of ratchets, we propose devices that control the motion of flux quanta in superconductors and could address a central problem in many superconducting devices; namely, the removal of trapped magnetic flux that produces noise. In layered superconductors there are two interpenetrating perpendicular vortex lattices consisting of Josephson vortices (JVs) and pancake vortices (PVs). We show that, owing to the JV–PV mutual interaction and asymmetric driving, the a.c. motion of JVs and/or PVs can provide a net d.c. vortex current. This controllable vortex motion can be used for making pumps, diodes and lenses of quantized magnetic flux. These proposed devices sculpt the microscopic magnetic flux profile by simply modifying the time dependence of the a.c. drive, without the need for samples with static pinning—for example, without lithography or irradiation.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Schematic diagram of three experimentally realizable devices designed for controlling the vortex motion.
Figure 2: Modes of operation of the vortex pump.
Figure 3: The motion of the PV stacks can be controlled by changing input parameters.

References

  1. Astumian, R. D. Making molecules into motors. Sci. Am., 56–64 (July 2001)

  2. Hänggi, P. & Reimann, P. Quantum ratchets reroute electrons. Phys. World 12, 21–22 (1999)

    Article  Google Scholar 

  3. Linke, H. Ratchets and brownian motors: Basics, experiments and applications. Appl. Phys. A (Special Issue) 75, 167 (2002)

    CAS  Article  Google Scholar 

  4. Reimann, P. Brownian motors: noisy transport far from equilibrium. Phys. Rep. 361, 57–265 (2002)

    CAS  Article  Google Scholar 

  5. Jülicher, F., Ajdari, A. & Prost, J. Modeling molecular motors. Rev. Mod. Phys. 69, 1269–1282 (1997)

    Article  Google Scholar 

  6. Astumian, R. D. Thermodynamics and kinetics of a Brownian motor. Science 276, 917–922 (1997)

    CAS  Article  Google Scholar 

  7. Wambaugh, J. F., Reichhardt, C., Olson, C. J., Marchesoni, F. & Nori, F. Superconducting fluxon pumps and lenses. Phys. Rev. Lett. 83, 5106–5109 (1999)

    CAS  Article  Google Scholar 

  8. Lee, C.-S., Jankó, B., Derényi, I. & Barabási, A.-L. Reducing vortex density in superconductors using the ‘ratchet effect’. Nature 400, 337–340 (1999)

    CAS  Article  Google Scholar 

  9. Olson, C. J., Reichhardt, C., Jankó, B. & Nori, F. Collective interaction-driven ratchet for transporting flux quanta. Phys. Rev. Lett. 87, 177002 (2001)

    CAS  Article  Google Scholar 

  10. Nori, F. Intermittently flowing rivers of quantized magnetic flux. Science 271, 1373–1374 (1996)

    CAS  Article  Google Scholar 

  11. Gammel, P. Why vortices matter. Nature 411, 434–435 (2001)

    CAS  Article  Google Scholar 

  12. Avraham, N. et al. ‘Inverse’ melting of a vortex lattice. Nature 411, 451–454 (2001)

    CAS  Article  Google Scholar 

  13. Harada, K. et al. Direct observation of vortex dynamics in superconducting films with regular arrays of defects. Science 274, 1167–1170 (1996)

    CAS  Article  Google Scholar 

  14. Tonomura, A. et al. Motion of vortices in superconductors. Nature 397, 308–309 (1999)

    CAS  Article  Google Scholar 

  15. Tonomura, A. et al. Observation of individual vortices trapped along columnar defects in high-temperature superconductors. Nature 412, 620–622 (2001)

    CAS  Article  Google Scholar 

  16. Matsuda, T. et al. Oscillating rows of vortices in superconductor. Science 294, 2136–2138 (2001)

    CAS  Article  Google Scholar 

  17. Tonomura, A. et al. Observation of structures of chain vortices inside anisotropic high-Tc superconductors. Phys. Rev. Lett. 88, 237001 (2002)

    CAS  Article  Google Scholar 

  18. Grigorenko, A., Bending, S., Tamegai, T., Ooi, S. & Henini, M. A one-dimensional chain state of vortex matter. Nature 414, 728–731 (2001)

    CAS  Article  Google Scholar 

  19. Vlasko-Vlasov, V. K., Koshelev, A., Welp, U., Crabtree, G. W. & Kadowaki, K. Decoration of Josephson vortices by pancake vortices in Bi2Sr2CaCu2O8+δ . Phys. Rev. B 66, 014523 (2002)

    Article  Google Scholar 

  20. Tokunaga, M., Kobayashi, M., Tokunaga, Y. & Tamegai, T. Visualization of vortex chains in Bi2Sr2CaCu2O8+y by magneto-optical imaging. Phys. Rev. B 66, 060507(R) (2002)

    Article  Google Scholar 

  21. Ooi, S., Shibauchi, T., Itaka, K., Okuda, N. & Tamegai, T. Vortex matter transition in Bi2Sr2CaCu2O8+y under tilted fields. Phys. Rev. B 63, 20501(R) (2001)

    Article  Google Scholar 

  22. Ooi, S., Shibauchi, T., Okuda, N. & Tamegai, T. Novel angular scaling of vortex phase transitions in Bi2Sr2CaCu2O8+y . Phys. Rev. Lett. 82, 4308–4311 (1999)

    CAS  Article  Google Scholar 

  23. Mirković, J., Savel'ev, S. E., Sugahara, E. & Kadowaki, K. Stepwise behavior of vortex-lattice melting transition in tilted magnetic fields in single crystals of Bi2Sr2CaCu2O8+δ . Phys. Rev. Lett. 86, 886–889 (2001)

    Article  Google Scholar 

  24. Bulaevskii, L. N., Ledvij, M. & Kogan, V. G. Vortices in layered superconductors with Josephson coupling. Phys. Rev. B 46, 366–380 (1992)

    CAS  Article  Google Scholar 

  25. Koshelev, A. E. Crossing lattices, vortex chains, and angular dependence of melting line in layered superconductors. Phys. Rev. Lett. 83, 187–190 (1999)

    CAS  Article  Google Scholar 

  26. Savel'ev, S. E., Mirković, J. & Kadowaki, K. London theory of the crossing vortex lattice in highly anisotropic layered superconductors. Phys. Rev. B 64, 094521 (2001)

    Article  Google Scholar 

  27. Buzdin, A. & Baladié, I. Attraction between pancake vortices in the crossing lattices of layered superconductors. Phys. Rev. Lett. 88, 147002 (2002)

    CAS  Article  Google Scholar 

  28. Dodgson, M. J. W. Phase transitions in isolated vortex chains. Phys. Rev. B 66, 014509 (2002)

    Article  Google Scholar 

  29. Latyshev, Yu. I., Gaifullin, M. B., Yamashita, T., Machida, M. & Matsuda, Y. Shapiro step response in the coherent Josephson flux flow state of Bi2Sr2CaCu2O8+δ . Phys. Rev. Lett. 87, 247007 (2001)

    CAS  Article  Google Scholar 

  30. Hirata, K., Ooi, S., Sadki, E. H. & Mochiku, T. Josephson vortex flow in Bi2Sr2CaCu2O8+y . Physica C (in the press)

  31. Ooi, S., Mochiku, T. & Hirata, K. Periodic oscillations of Josephson-vortex flow resistance in Bi2Sr2CaCu2O8+y. ArXiv.org: cond-mat/0112209.

  32. Gaifullin, M. B., Latyshev, Yu. I., Yamashita, T. & Matsuda, Y. Shapiro step response in the vortex state of Bi2Sr2CaCu2O8+δ . Physica C (in the press)

  33. Field, S. B. et al. Vortex configurations, matching, and domain structure in large arrays of artificial pinning centers. Phys. Rev. Lett. 88, 067003 (2002)

    CAS  Article  Google Scholar 

  34. Indenbom, M. V. et al. Magneto-optical observation of twisted vortices in type-II superconductors. Nature 385, 702–705 (1997)

    CAS  Article  Google Scholar 

  35. Bartussek, R., Hänggi, P. & Kissner, J. P. Periodically rocked thermal ratchets. Europhys. Lett. 28, 459–464 (1994)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support from the US National Science Foundation grant No. EIA-0130383.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Nori.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Savel'ev, S., Nori, F. Experimentally realizable devices for controlling the motion of magnetic flux quanta in anisotropic superconductors. Nature Mater 1, 179–184 (2002). https://doi.org/10.1038/nmat746

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat746

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing