Abstract
A new generation of microscopic ratchet systems is currently being developed for controlling the motion of electrons and fluxons, as well as for particle separation and electrophoresis. Virtually all of these use static spatially asymmetric potential energies to control transport properties. Here we propose completely new types of ratchet-like systems that do not require fixed spatially asymmetric potentials in the samples. As specific examples of this novel general class of ratchets, we propose devices that control the motion of flux quanta in superconductors and could address a central problem in many superconducting devices; namely, the removal of trapped magnetic flux that produces noise. In layered superconductors there are two interpenetrating perpendicular vortex lattices consisting of Josephson vortices (JVs) and pancake vortices (PVs). We show that, owing to the JV–PV mutual interaction and asymmetric driving, the a.c. motion of JVs and/or PVs can provide a net d.c. vortex current. This controllable vortex motion can be used for making pumps, diodes and lenses of quantized magnetic flux. These proposed devices sculpt the microscopic magnetic flux profile by simply modifying the time dependence of the a.c. drive, without the need for samples with static pinning—for example, without lithography or irradiation.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Long-range vortex transfer in superconducting nanowires
Scientific Reports Open Access 27 August 2019
-
Josephson vortex loops in nanostructured Josephson junctions
Scientific Reports Open Access 09 February 2018
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout



References
Astumian, R. D. Making molecules into motors. Sci. Am., 56–64 (July 2001)
Hänggi, P. & Reimann, P. Quantum ratchets reroute electrons. Phys. World 12, 21–22 (1999)
Linke, H. Ratchets and brownian motors: Basics, experiments and applications. Appl. Phys. A (Special Issue) 75, 167 (2002)
Reimann, P. Brownian motors: noisy transport far from equilibrium. Phys. Rep. 361, 57–265 (2002)
Jülicher, F., Ajdari, A. & Prost, J. Modeling molecular motors. Rev. Mod. Phys. 69, 1269–1282 (1997)
Astumian, R. D. Thermodynamics and kinetics of a Brownian motor. Science 276, 917–922 (1997)
Wambaugh, J. F., Reichhardt, C., Olson, C. J., Marchesoni, F. & Nori, F. Superconducting fluxon pumps and lenses. Phys. Rev. Lett. 83, 5106–5109 (1999)
Lee, C.-S., Jankó, B., Derényi, I. & Barabási, A.-L. Reducing vortex density in superconductors using the ‘ratchet effect’. Nature 400, 337–340 (1999)
Olson, C. J., Reichhardt, C., Jankó, B. & Nori, F. Collective interaction-driven ratchet for transporting flux quanta. Phys. Rev. Lett. 87, 177002 (2001)
Nori, F. Intermittently flowing rivers of quantized magnetic flux. Science 271, 1373–1374 (1996)
Gammel, P. Why vortices matter. Nature 411, 434–435 (2001)
Avraham, N. et al. ‘Inverse’ melting of a vortex lattice. Nature 411, 451–454 (2001)
Harada, K. et al. Direct observation of vortex dynamics in superconducting films with regular arrays of defects. Science 274, 1167–1170 (1996)
Tonomura, A. et al. Motion of vortices in superconductors. Nature 397, 308–309 (1999)
Tonomura, A. et al. Observation of individual vortices trapped along columnar defects in high-temperature superconductors. Nature 412, 620–622 (2001)
Matsuda, T. et al. Oscillating rows of vortices in superconductor. Science 294, 2136–2138 (2001)
Tonomura, A. et al. Observation of structures of chain vortices inside anisotropic high-Tc superconductors. Phys. Rev. Lett. 88, 237001 (2002)
Grigorenko, A., Bending, S., Tamegai, T., Ooi, S. & Henini, M. A one-dimensional chain state of vortex matter. Nature 414, 728–731 (2001)
Vlasko-Vlasov, V. K., Koshelev, A., Welp, U., Crabtree, G. W. & Kadowaki, K. Decoration of Josephson vortices by pancake vortices in Bi2Sr2CaCu2O8+δ . Phys. Rev. B 66, 014523 (2002)
Tokunaga, M., Kobayashi, M., Tokunaga, Y. & Tamegai, T. Visualization of vortex chains in Bi2Sr2CaCu2O8+y by magneto-optical imaging. Phys. Rev. B 66, 060507(R) (2002)
Ooi, S., Shibauchi, T., Itaka, K., Okuda, N. & Tamegai, T. Vortex matter transition in Bi2Sr2CaCu2O8+y under tilted fields. Phys. Rev. B 63, 20501(R) (2001)
Ooi, S., Shibauchi, T., Okuda, N. & Tamegai, T. Novel angular scaling of vortex phase transitions in Bi2Sr2CaCu2O8+y . Phys. Rev. Lett. 82, 4308–4311 (1999)
Mirković, J., Savel'ev, S. E., Sugahara, E. & Kadowaki, K. Stepwise behavior of vortex-lattice melting transition in tilted magnetic fields in single crystals of Bi2Sr2CaCu2O8+δ . Phys. Rev. Lett. 86, 886–889 (2001)
Bulaevskii, L. N., Ledvij, M. & Kogan, V. G. Vortices in layered superconductors with Josephson coupling. Phys. Rev. B 46, 366–380 (1992)
Koshelev, A. E. Crossing lattices, vortex chains, and angular dependence of melting line in layered superconductors. Phys. Rev. Lett. 83, 187–190 (1999)
Savel'ev, S. E., Mirković, J. & Kadowaki, K. London theory of the crossing vortex lattice in highly anisotropic layered superconductors. Phys. Rev. B 64, 094521 (2001)
Buzdin, A. & Baladié, I. Attraction between pancake vortices in the crossing lattices of layered superconductors. Phys. Rev. Lett. 88, 147002 (2002)
Dodgson, M. J. W. Phase transitions in isolated vortex chains. Phys. Rev. B 66, 014509 (2002)
Latyshev, Yu. I., Gaifullin, M. B., Yamashita, T., Machida, M. & Matsuda, Y. Shapiro step response in the coherent Josephson flux flow state of Bi2Sr2CaCu2O8+δ . Phys. Rev. Lett. 87, 247007 (2001)
Hirata, K., Ooi, S., Sadki, E. H. & Mochiku, T. Josephson vortex flow in Bi2Sr2CaCu2O8+y . Physica C (in the press)
Ooi, S., Mochiku, T. & Hirata, K. Periodic oscillations of Josephson-vortex flow resistance in Bi2Sr2CaCu2O8+y. ArXiv.org: cond-mat/0112209.
Gaifullin, M. B., Latyshev, Yu. I., Yamashita, T. & Matsuda, Y. Shapiro step response in the vortex state of Bi2Sr2CaCu2O8+δ . Physica C (in the press)
Field, S. B. et al. Vortex configurations, matching, and domain structure in large arrays of artificial pinning centers. Phys. Rev. Lett. 88, 067003 (2002)
Indenbom, M. V. et al. Magneto-optical observation of twisted vortices in type-II superconductors. Nature 385, 702–705 (1997)
Bartussek, R., Hänggi, P. & Kissner, J. P. Periodically rocked thermal ratchets. Europhys. Lett. 28, 459–464 (1994)
Acknowledgements
We gratefully acknowledge support from the US National Science Foundation grant No. EIA-0130383.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing financial interests.
Rights and permissions
About this article
Cite this article
Savel'ev, S., Nori, F. Experimentally realizable devices for controlling the motion of magnetic flux quanta in anisotropic superconductors. Nature Mater 1, 179–184 (2002). https://doi.org/10.1038/nmat746
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmat746
This article is cited by
-
Long-range vortex transfer in superconducting nanowires
Scientific Reports (2019)
-
Josephson vortex loops in nanostructured Josephson junctions
Scientific Reports (2018)
-
Switchable geometric frustration in an artificial-spin-ice–superconductor heterosystem
Nature Nanotechnology (2018)
-
Ratchet without spatial asymmetry for controlling the motion of magnetic flux quanta using time-asymmetric drives
Nature Materials (2006)
-
Conveyor belts for magnetic flux quanta
Nature Materials (2006)