Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress Article
  • Published:

New materials from high-pressure experiments

Abstract

High-pressure synthesis on an industrial scale is applied to obtain synthetic diamonds and cubic boron nitride (c-BN), which are the superhard abrasives of choice for cutting and shaping hard metals and ceramics. Recently, high-pressure science has undergone a renaissance, with novel techniques and instrumentation permitting entirely new classes of high-pressure experiments. For example, superconducting behaviour was previously known for only a few elements and compounds. Under high-pressure conditions, the 'superconducting periodic table' now extends to all classes of the elements, including condensed rare gases, and ionic compounds such as CsI. Another surprising result is the newly discovered solid-state chemistry of light-element 'gas' molecules such as CO2, N2 and N2O. These react to give polymerized covalently bonded or ionic mineral structures under conditions of high pressure and temperature: the new solids are potentially recoverable to ambient conditions. Here we examine innovations in high-pressure research that might be harnessed to develop new materials for technological applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Superhard materials, including several new materials prepared by high-pressure synthesis: both low-hardness (blue) and high-hardness (pink) values within a typically measured range are shown.
Figure 2: Bulk modulus plotted against unit cell volume (per metal atom) for highly incompressible metals and compounds.
Figure 3: A generalized free-energy/high-pressure diagram for a material that undergoes a phase transition into a high-density form.
Figure 4: A hypothetical phase diagram for silicon under positive and negative P T conditions, from combined results of high-pressure and synthesis studies in stable and metastable regimes, and ab initio calculations and simulation results.

Similar content being viewed by others

References

  1. Brazhkin, V.V., Lyapin, A.G. & Hemley, R.J. Harder than diamond: dreams and reality. Phil. Mag. A 82, 231–253 (2002).

    Article  CAS  Google Scholar 

  2. Holzapfel, W.B. & Isaacs, N.S. High-Pressure Techniques in Chemistry and Physics (Oxford Univ. Press, Oxford, 1997).

    Google Scholar 

  3. Mao, H.K., Hemley, R.J. New windows on the Earth's deep interior. Rev. Mineral. 37, 1–32 (1998).

    CAS  Google Scholar 

  4. Sumiya, H., Toda, N. & Satoh, S. High-quality large diamond crystals. New Diamond Frontier Carbon Technol. 10, 233–251 (2000).

    CAS  Google Scholar 

  5. Goncharov, A. et al. Spectroscopic studies of the vibrational and electronic properties of solid hydrogen to 285 GPa. Proc. Natl Acad. Sci. USA 98, 14234–14237 (2001).

    Article  CAS  Google Scholar 

  6. Weir, S.T. et al. Epitaxial diamond encapsulation of metal microprobes for high pressure experiments. Appl. Phys. Lett. 77, 3400–3402 (2000).

    Article  CAS  Google Scholar 

  7. Patterson, J.R. et al. Single-wall carbon nanotubes under high pressures to 62 GPa studied using designer diamond anvils. J. Nanosci. Nanotechnol. 1, 143–147 (2001).

    Article  CAS  Google Scholar 

  8. Amaya, K., Shimizu, K. & Eremets, M.I. Search for superconductivity under ultra-high pressure. Int. J. Mod. Phys. B 13, 3623–3625 (1999).

    Article  CAS  Google Scholar 

  9. Eremets, M.I. et al. Electrical conductivity of Xe at megabar pressures. Phys. Rev. Lett. 83, 2797–2800 (2001).

    Google Scholar 

  10. Eremets, M.I. et al. Superconductivity in boron. Science 293, 272–274 (2001).

    Article  CAS  Google Scholar 

  11. Yan, C.-S. & Vohra, Y.K. in Science and Technology of High Pressure, Proc. AIRAPT-17 (eds Manghnani, M.H., Nellis, W.J. & Nicol, M.F.) 885–888 (Universities Press, Hyderabad, 2000).

    Google Scholar 

  12. Yamakata, M. et al. in Science and Technology of High Pressure, Proc. AIRAPT-17 (eds Manghnani, M.H., Nellis, W.J. & Nicol, M.F.) 1109–1112 (Universities Press, Hyderabad, 2000).

    Google Scholar 

  13. Katayama, K. et al. A first-order liquid-liquid phase transition in phosphorus. Nature 403, 170–173 (2000).

    Article  CAS  Google Scholar 

  14. Weidner, D.J. Rheological studies at high pressure. Rev. Mineral. 37, 493–524 (1998).

    CAS  Google Scholar 

  15. Klotz, S. et al. Pressure induced frequency shifts of transverse acoustic phonons in germanium to 9.7 GPa. Phys. Rev. Lett. 79, 1313–1316 (1997).

    Article  CAS  Google Scholar 

  16. Loveday, J.S. et al. Transition from cage clathrate to filled ice: the structure of methane hydrate III. Phys. Rev. Lett. 87, 215501–215504 (2001).

    Article  CAS  Google Scholar 

  17. Sekine, T. et al. Shock-induced transformation of β-Si3N4 to a high-pressure cubic-spinel phase. Appl. Phys. Lett. 76, 3706–3708 (2000).

    Article  CAS  Google Scholar 

  18. Hemley, R.J. & Ashcroft, N.W. The revealing role of pressure in the condensed-matter sciences. Phys. Today 51, 26–32 (1998).

    Article  CAS  Google Scholar 

  19. Hemley, R.J. (ed.) Ultrahigh-Pressure Mineralogy: Physics and Chemistry of the Earth's Deep Interior (Mineralogical Society of America, Washington DC, 1998).

    Book  Google Scholar 

  20. Hemley, R.J. Effects of pressure on molecules. Annu. Rev. Phys. Chem. 51, 763–800 (2000).

    Article  CAS  Google Scholar 

  21. Jonas, J. in Science and Technology of High Pressure, Proc. AIRAPT-17 (eds Manghnani, M.H., Nellis, W.J. & Nicol, M.F.) Vol. 1, 29–39 (Universities Press, Hyderabad, 2000).

    Google Scholar 

  22. Winter, R. in High Pressure Phenomena: Proc. International School of Physics 'Enrico Fermi', Course CXLVII (eds Hemley, R.J. et al.) (Società Italiana di Fisica, in the press).

  23. Schwarz, U. et al. Rubidium-IV: a high pressure phase with complex crystal structure. Phys. Rev. Lett. 83, 4085–4088 (1999).

    Article  CAS  Google Scholar 

  24. Nelmes, R.J. et al. Structure of Rb-III: novel modulated stacking structures in alkali metals. Phys. Rev. Lett. 88, 155503–155506 (2002).

    Article  CAS  Google Scholar 

  25. McMahon, M.I., Degtyareva, O. & Nelmes, R.J. Ba-IV-type incommensurate crystal structure in group-V metals. Phys. Rev. Lett. 85, 4896–4899 (2002).

    Article  Google Scholar 

  26. Poole, P.H. et al. Polymorphic phase transitions in liquids and glasses. Science 275, 322–323 (1997).

    Article  CAS  Google Scholar 

  27. Stanley, H.E. & Brazhkin, V. (eds) Transformations in Disordered Substances, NATO Adv. Res. Workshop (Moscow, 24–28 May 2001) (in the press).

    Google Scholar 

  28. Kailer, A., Gogotsi, Y.G., Nickel, K. Phase transformations of silicon caused by contact loading. J. Appl. Phys. 81, 3057–3063 (1997).

    Article  CAS  Google Scholar 

  29. Deb, S. et al. Pressure-induced amorphization and an amorphous–amorphous transition in densified porous silicon. Nature 414, 528–530 (2001).

    Article  CAS  Google Scholar 

  30. Kroke, E. High-pressure synthesis of novel binary nitrogen compounds of main group elements. Angew. Chem. Int. Ed. 41, 77–82 (2002).

    Article  CAS  Google Scholar 

  31. Zerr, A. et al. Synthesis of cubic silicon nitride. Nature 400, 340–342 (1999).

    Article  CAS  Google Scholar 

  32. Zerr, A. et al. Elastic moduli and hardness of cubic silicon nitride. J. Am. Ceram. Soc. 85, 86–90 (2002).

    Article  CAS  Google Scholar 

  33. Sekine, T. & Mitsuhashi, T. High-temperature metastability of cubic spinel Si3N4 . Appl. Phys. Lett. 79, 2719–2721.

  34. Sekine, T. et al. Cubic Si6 − zAlzOzN8 − z (z = 1.8 and 2.8) spinels formed by shock compression. Chem. Phys. Lett. 344, 395–399 (2001).

    Article  CAS  Google Scholar 

  35. Schwarz, M. et al. Spinel sialons. Angew. Chem. Int. Ed. 41, 788–789 (2002).

    Google Scholar 

  36. Landskron, K. et al. High-pressure synthesis of γ-P3N5 at 11 GPa and 1500 °C in a multianvil assembly: a binary phosphorus (V) nitride with a three-dimensional network structure from PN4 tetrahedra and tetragonal PN5 pyramids. Angew. Chem. Int. Ed. 40, 2643–2645 (2001).

    Article  CAS  Google Scholar 

  37. Léger, J.M. et al. High-pressure X-ray investigation of the moganite- and quartz-type phases of phosphorous oxynitride. J. Phys. Chem. Solids 61, 1447–1453 (2000).

    Article  Google Scholar 

  38. Iota, V.V., Yoo, C.S. & Cynn, H. Quartzlike carbon dioxide: an optically nonlinear extended solid at high pressures and temperatures. Science 283, 1510–1513 (1999).

    Article  CAS  Google Scholar 

  39. Yoo, C.S. et al. Crystal structure of carbon dioxide at high pressure: 'superhard' polymeric carbon dioxide. Phys. Rev. Lett. 83, 5527–5530 (1999).

    Article  CAS  Google Scholar 

  40. Dong, J. et al. Investigation of hardness in tetrahedrally bonded nonmolecular CO2 solids by density-functional theory. Phys. Rev. B 62, 14685–14689 (2000).

    Article  CAS  Google Scholar 

  41. Tschauner, O., Mao, H.K. & Hemley, R.J. New transformations of CO2 at high pressures and temperatures. Phys. Rev. Lett. 87, 75701 (2001).

  42. Somayazulu, M. et al. High pressure-high temperature chemistry of N2O: formation of nitrosonium nitrate. Phys. Rev. Lett. 87, 135504–135508 (2001).

    Article  CAS  Google Scholar 

  43. Gregoryanz, E. et al. High-pressure amorphous nitrogen. Phys. Rev. B 64, (2001).

  44. Hirai, H. et al. Methane hydrate behavior under high pressure. J. Phys. Chem. B 104, 1429–1433 (2000).

    Article  CAS  Google Scholar 

  45. Chou, I.M. et al. Diamond-anvil cell observations of a new methane hydrate phase in the 100-MPa pressure range. J. Phys. Chem. A 105, 4664–4668 (2001).

    Article  CAS  Google Scholar 

  46. Peiris, S.M. & Russell, T.P. Photolysis of compressed sodium azide (NaN3) as a synthetic pathway to nitrogen materials. J. Phys. Chem. (submitted).

  47. Citroni, M. et al. Laser-induced selectivity for dimerization versus polymerization of butadiene under pressure. Science 295, 2058–2060 (2002).

    Article  CAS  Google Scholar 

  48. Veprek, S. The search for novel, superhard materials. J. Vac. Sci. Technol. A 17, 2401–2419 (1999).

    Article  CAS  Google Scholar 

  49. Haines, J., Léger, J.M. & Bocquillon, J. Synthesis and design of superhard materials. Annu. Rev. Mater. Res. 31, 1–23 (2001)

    Article  CAS  Google Scholar 

  50. Solozhenko, V.L., Dub, S.N. & Novikov, N. Mechanical properties of cubic BC2N, a new superhard phase. Diamond Relat. Mater. 10, 2228–2231 (2001)

    Article  CAS  Google Scholar 

  51. Malkow, T. Critical observations in the research of carbon nitride. Mater. Sci. Eng. A 302, 309 (2001).

  52. Zhang, Z. et al. High-pressure bulk synthesis of crystalline C6N9H3.HCl: a novel C3N4 graphitic derivative. J. Am. Chem. Soc. 123, 7788–7796 (2001).

    Article  CAS  Google Scholar 

  53. Garvie, L.A.J. et al. BN0.5O0.4C0.1: carbon- and oxygen-substituted hexagonal BN. J. Alloys Compounds 290, 34–40 (1999).

    Article  CAS  Google Scholar 

  54. Hubert, H. et al. Icosahedral packing of B12 icosahedra in boron suboxide (B6O). Nature 391, 376–378 (1998).

    Article  Google Scholar 

  55. Hubert, H. et al. High-pressure, high-temperature synthesis and characterization of boron suboxide (B6O). Chem. Mater. 10, 1530–1537 (1998).

    Article  CAS  Google Scholar 

  56. Hubert, H. et al. High-pressure, high-temperature syntheses in the B–C–N–O system. J. Solid State Chem. 133, 356–364 (1997).

    Article  CAS  Google Scholar 

  57. Cynn, H. et al. Osmium has the lowest experimentally-determined compressibility. Phys. Rev. Lett. 88, 135701–135704 (2002).

    Article  CAS  Google Scholar 

  58. Dubrovinsky, L.S. et al. The hardest known oxide. Nature 410, 653–654 (2001).

    Article  CAS  Google Scholar 

  59. Soignard, E., Somayazulu, M. & McMillan, P.F. High pressure synthesis and study of highly incompressible molybdenum nitride (MoN1 − x) phases. Phys. Rev. Lett. (submitted).

  60. Kanda, H. Colored high pressure high temperature (HPHT) synthetic diamonds. Radiation Effects Defects Solids 156, 163–172 (2001).

    Article  CAS  Google Scholar 

  61. Taniguchi, T. et al. Appearance of n-type semiconducting properties of cBN single crystals grown at high pressure. Jpn. J. Appl. Phys. 241, L109–L111 (2002).

    Article  CAS  Google Scholar 

  62. Sumiya, H. et al. Crystalline perfection of high purity synthetic diamond crystal. J. Crystal Growth 178, 485–494 (1997).

    Article  CAS  Google Scholar 

  63. Nakamura, S. Blue-green light-emitting diodes and violet laser diodes. Mater. Res. Soc. Bull. 22, 29–35 (1997).

    Article  CAS  Google Scholar 

  64. Ponce, F.A. & Bour, D.P. Nitride-based semiconductors for blue and green light-emitting devices. Nature 386, 351–359 (1997).

    Article  CAS  Google Scholar 

  65. Krukowski, S. et al. High-nitrogen-pressure growth of GaN single crystals: doping and physical properties. J. Phys. Condens. Matter 13, 8881–8890 (2001).

    Article  CAS  Google Scholar 

  66. Bockowski, M. et al. Crystal growth of aluminum nitride under high pressure of nitrogen. Mater. Sci. Semicond. Proc. 4, 543–548 (2001).

    Article  CAS  Google Scholar 

  67. Leinenweber, K. et al. Synthesis and structure refinement of the spinel, γ-Ge3N4 . Chem. Eur. J. 5, 3076–3080 (1999).

    Article  CAS  Google Scholar 

  68. Dong, J. et al. Theoretical study of β-Ge3N4 and its high pressure spinel γ-phase. Phys. Rev. B 61, 11979–11992 (2000).

    Article  CAS  Google Scholar 

  69. Soignard, E. et al. High pressure-high temperature investigation of nitride spinels in the system Si3N4–Ge3N4 . Solid State Commun. 120, 237–242 (2001).

    Article  CAS  Google Scholar 

  70. Carmalt, C.J., Low-temperature chemical approaches to electronic materials. Abstr. Pap. Am. Chem. Soc. 219, 267 (2000).

  71. Shimizu, K. et al. Superconductivity in the nonmagnetic state of iron under pressure. Nature 412, 316–318 (2001).

    Article  CAS  Google Scholar 

  72. Struzhkin, V.V. et al. Superconductivity at 10–17 K in compressed sulphur. Nature 390, 382–383 (1997).

    Article  Google Scholar 

  73. Eremets, M.I. et al. Metallization and superconductivity in CsI at pressures up to 220 GPa. J. Phys. Condens. Matter 10, 11519–11523 (1998).

    Article  CAS  Google Scholar 

  74. Iyo, A. et al. High-pressure synthesis of TlBa2Can − 1CunOy (n = 3 and 4) with T c = 133.5 K (n = 3) and 127 K (n = 4). Physica C 357, 324–328 (2001).

    Article  Google Scholar 

  75. Kawashima, T., Matsui, Y. & Takayama-Muromachi, E. New oxyfluoride superconductors Sr2Can − 1CunO2n + δF2 ± y (n = 2; T c = 99 K, n = 3; T c = 111 K) prepared at high pressure. Physica C 257, 313–320 (1996).

    Article  CAS  Google Scholar 

  76. Schilling, A. et al. Superconductivity above 130 K in the Hg–Ba–Ca–Cu–O system. Nature 362, 56–58 (1993).

    Article  Google Scholar 

  77. Gao, L. et al. Superconductivity up to 164 K in HgBa2Cam − 1CumO2m + 2 + δ (m = 1, 2 and 3) under quasihydrostatic pressures. Phys Rev B 50, 4260–4263 (1994).

    Article  CAS  Google Scholar 

  78. Locquet, J.-P. et al. Doubling the critical temperature of La1.9Sr0.1CuO4 using epitaxial strain. Nature 394, 453–456 (1998).

    Article  CAS  Google Scholar 

  79. Sato, H. et al. La2 − xSrxCuOy epitaxial thin films (x = 0 to 2): structure, strain, and superconductivity. Phys. Rev. B 61, 12447–12456 (2000).

    Article  CAS  Google Scholar 

  80. Nagamatsu, J. et al. Superconductivity at 39 K in magnesium diboride. Nature 410, 63–64 (2001).

    Article  CAS  Google Scholar 

  81. Imai, M. et al. Phase transitions of BaSi2 at high pressures and high temperatures. Phys. Rev. B 58, 11922–11926 (1998).

    Article  CAS  Google Scholar 

  82. Nolas, G.S. et al. Semiconducting Ge-clathrates: promising candidates for thermoelectric applications. Appl. Phys. Lett. 73, 178–182 (1998).

    Article  CAS  Google Scholar 

  83. Gryko, J. et al. A low-density form of crystalline silicon with a wide optical bandgap. Phys. Rev. B 62, 7707–7710 (2000).

    Article  Google Scholar 

  84. Herrmann, R.F.W. et al. Superconductivity in silicon based barium-inclusion clathrates. Chem. Phys. Lett. 283, 29–32 (1998).

    Article  CAS  Google Scholar 

  85. Ramachandran, G.K. et al. High-pressure phase transformation of the silicon clathrate Si136 . J. Phys. Condens. Matter 12, 4013–4020 (2000).

    Article  CAS  Google Scholar 

  86. Tolbert, S.H. et al. Pressure-induced structural transformations in Si nanocrystals: surface and shape effects. Phys. Rev. Lett. 76, 4384–4387 (1996).

    Article  CAS  Google Scholar 

  87. Lee, Y. et al. Phase transition of zeolite RHO at high-pressure. J. Am. Chem. Soc. 123, 8418–8419 (2001).

    Article  CAS  Google Scholar 

  88. Lee, Y. et al. Pressure-induced volume expansion of zeolites in the natrolite family. J. Am. Chem. Soc. (in the press).

  89. Angell, C.A., Borick, S. & Grabow, M. Glass transitions and first-order liquid-metal-semiconductor transitions in 4-5-6 covalent systems. J. Non-Cryst. Solids 207, 463–471 (1996).

    Article  Google Scholar 

  90. Melinon, P. et al. New phases of amorphous carbon and silicon films obtained by low energy cluster beam expansion. Mater. Sci. Eng. A 217/218, 69–73 (1996).

    Article  Google Scholar 

  91. Kamalakaran, R., Singh, A.K. & Srivasta, O.N. Formation and characterization of silicon nanoparticles — threads, tubules and possibly silicon fullerene-like structures. J. Phys. Condens. Matter 7, 529–535 (1995).

    Article  Google Scholar 

Download references

Acknowledgements

P.F.M. is a Wolfson–Royal Society Research Merit Award holder.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McMillan, P. New materials from high-pressure experiments. Nature Mater 1, 19–25 (2002). https://doi.org/10.1038/nmat716

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat716

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing