Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Living bacteria in silica gels


The encapsulation of enzymes within silica gels has been extensively studied during the past decade for the design of biosensors and bioreactors1,2,3,4,5,6,7,8,9,10,11. Yeast spores and bacteria have also been recently immobilized within silica gels12,13,14,15,16,17 where they retain their enzymatic activity, but the problem of the long-term viability of whole cells in an inorganic matrix has never been fully addressed. It is a real challenge for the development of sol–gel processes18. Generic tests have been performed to check the viability of Escherichia coli bacteria in silica gels. Surprisingly, more bacteria remain culturable in the gel than in an aqueous suspension. The metabolic activity of the bacteria towards glycolysis decreases slowly, but half of the bacteria are still viable after one month. When confined within a mineral environment, bacteria do not form colonies. The exchange of chemical signals between isolated bacteria rather than aggregates can then be studied, a point that could be very important for 'quorum sensing'19.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Determination of the formation of metabolites by 13 C NMR.

Similar content being viewed by others


  1. Avnir, D., Braun, S., Lev, O. & Ottolenghi, M. Enzymes and other proteins entrapped in sol-gel materials. Chem. Mater. 6, 1605–1614 (1994).

    Article  CAS  Google Scholar 

  2. Zink, J., Valentine, J.S. & Dunn, B. Biomolecular materials based on sol-gel encapsulated proteins. New J. Chem. 18, 1109–1115 (1994).

    CAS  Google Scholar 

  3. Livage, J. Bioactivity in sol-gel glasses. C.R. Acad. Sci. Paris IIb 322, 417–427 (1996).

    CAS  Google Scholar 

  4. Gill, I. & Ballesteros, A. Encapsulation of biologicals within silicate, siloxane and hybrid sol-gel polymers: an efficient and generic approach. J. Am. Chem. Soc. 120, 8587–8598 (1998).

    Article  CAS  Google Scholar 

  5. Reetz, M.T. Entrapment of biocatalysts in hydrophobic sol-gel materials for use in organic chemistry. Adv. Mater. 9, 943–954 (1997).

    Article  CAS  Google Scholar 

  6. Dave, B.C., Dunn, B., Valentine, J.S. & Zink, J.I. Sol-gel encapsulation methods for biosensors. Anal. Chem. 66, 1120A–1127A (1994).

    Article  CAS  Google Scholar 

  7. Lev, O. et al. Organically modified sol-gel sensors. Anal. Chem. 67, 22A–30A (1995).

    Article  CAS  Google Scholar 

  8. Lin, J. & Brown, C.W. Sol-gel glass as a matrix for chemical and biochemical sensing Trends Anal. Chem. 16, 200–211 (1997).

    Article  CAS  Google Scholar 

  9. Wang, J. Sol-gel materials for electrochemical biosensors. Anal. Chim. Acta 399, 21–27 (1999).

    Article  CAS  Google Scholar 

  10. Collinson, M.N. & Howells, A.R. Sol-gel and electrochemistry. Anal. Chem. 72, 702A–709A (2000).

    CAS  Google Scholar 

  11. Wolfbeis, O.S., Reisfeld, R. & Oehme, I. Sol-gels and chemical sensors. Struct. Bond. 85, 51–98 (1996).

    Article  CAS  Google Scholar 

  12. Carturan, G., Campostrini, R., Dirè, S. & de Alteris, E. Inorganic gels for immobilization of biocatalysts: inclusion of invertase-active whole cells of yeast (Saccharomyces cerevisiae) into thin layers of SiO2 gel deposited on glass sheets. J. Mol. Cat. 57, L13–L16 (1989).

    Article  CAS  Google Scholar 

  13. Pope, E.J.A., Braun, K. & Peterson, C.M. Bioartificial organs I: silica gel encapsulated pancreatic islets for the treatment of diabetes mellitus. J. Sol-Gel Sci. Technol. 8, 635–639 (1997).

    CAS  Google Scholar 

  14. Fennouh, S., Guyon, S., Jourdat, C., Livage, J. & Roux, C. Encapsulation of bacteria in silica gels. C.R. Acad. Sci. Paris IIc 2, 625–630 (1999).

    CAS  Google Scholar 

  15. Finnie, K.S., Bartlett, J.R. & Woolfrey, J.L. Encapsulation of sulfate-reducing bacteria in a silica host. J. Mater. Chem. 10, 1099–1101 (2000).

    Article  CAS  Google Scholar 

  16. Premkumar, J.R., Lev, O., Rosen, R. & Belkin, S. Encapsulation of luminous recombinant E. coli in sol-gel silicate films. Adv. Mater. 13, 1773–1775 (2001).

    Article  CAS  Google Scholar 

  17. Premkumar, J.R. et al. Antibody-based immobilization of bioluminescent bacterial sensor cells. Talanta 55, 1029–1038 (2001).

    Article  CAS  Google Scholar 

  18. Livage, J., Coradin, T. & Roux, C. Encapsulation of biomolecules in silica gels. J. Phys. Cond. Mater. 13, R673–R691 (2001).

    Article  CAS  Google Scholar 

  19. Swift, S. et al. Density-dependent determinant of bacterial physiology. Adv. Microb. Physiol. 45, 199–270 (2001).

    Article  CAS  Google Scholar 

  20. Haugland, R.P. Molecular Probe Handbook of Fluorescent Probes and Research Chemicals (Molecular Probes, Eugene, Oregon, 1996).

    Google Scholar 

  21. Villarino, A., Bouvet, O.M.M., Regnault, B., Martin-Delautre, S. & Grimont, P.A.D. Exploring the frontier between life and death in Escherichia coli: evaluation of different viability markers in live and heat- or UV-killed cells. Res. Microbiol. 151, 755–768 (2000).

    Article  CAS  Google Scholar 

  22. Coiffier, A., Coradin, T., Roux, C., Bouvet, O.M.M. & Livage, J. Sol-gel encapsulation of bacteria: a comparison between alkoxide and aqueous routes. J. Mater. Chem. 11, 2039–2044 (2001).

    Article  CAS  Google Scholar 

  23. Carturan, G., Dal Monte, R. & Muraca, M. SiO2 entrapment of animal cells for hybrid bioartificial organs. Mater. Res. Soc. Symp. Proc. 628, CC10.1.1–CC10.1.15 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Jacques Livage.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nassif, N., Bouvet, O., Noelle Rager, M. et al. Living bacteria in silica gels. Nature Mater 1, 42–44 (2002).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing