Materials for terahertz science and technology

Abstract

Terahertz spectroscopy systems use far-infrared radiation to extract molecular spectral information in an otherwise inaccessible portion of the electromagnetic spectrum. Materials research is an essential component of modern terahertz systems: novel, higher-power terahertz sources rely heavily on new materials such as quantum cascade structures. At the same time, terahertz spectroscopy and imaging provide a powerful tool for the characterization of a broad range of materials, including semiconductors and biomolecules.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The electromagnetic spectrum.
Figure 2: Illustration of a THz-TDS pump probe system.
Figure 3: Simplified conduction band structure of the THz quantum cascade laser demonstrated by Kohler et al . (after ref. 1).
Figure 4: A broadband THz pulse with a frequency spectrum extending into the infrared.
Figure 5: T-ray computed tomography image of two plastic cylinders (after ref. 57).
Figure 6: THz image of an onion cell membrane (after ref. 60).
Figure 7: A biotin-avidin T-ray biosensor (after ref. 65).

References

  1. 1

    Kohler, R. et al. Terahertz semiconductor-heterostructure laser. Nature 417, 156–159 (2002).

  2. 2

    Nagel, M., Haring Bolivar, P., Brucherseifer, M. & Kurz, H. Integrated THz technology for label-free genetic diagnostics. Appl. Phys. Lett. 80, 154–156 (2002).

  3. 3

    Huber, R. et al. How many-particle interactions develop after ultrafast excitation of an electron-hole plasma. Nature 414, 286–289 (2001).

  4. 4

    Auston, D.H., Cheung, K.P., Valdmanis, J.A. & Kleinman, D.A. Cherenkov radiation from femtosecond optical pulses in electro-optic media. Phys. Rev. Lett. 53, 1555–1558 (1984).

  5. 5

    Fattinger, Ch. & Grischkowsky, D. Point source terahertz optics. Appl. Phys. Lett. 53, 1480–1482 (1988).

  6. 6

    Ferguson, B. & Abbott, D. De-noising techniques for terahertz responses of biological samples. Microelectron. J. 32, 943–953 (2001).

  7. 7

    Hashimshony, D., Zigler, A. & Papadopoulos, D. Conversion of electrostatic to electromagnetic waves by superluminous ionization fronts. Phys. Rev. Lett. 86, 2806–2809 (2001).

  8. 8

    van der Weide, D.W., Murakowski, J. & Keilmann, F. Gas-absorption spectroscopy with electronic terahertz techniques. IEEE Trans. Microwave Theory Tech. 48, 740–743 (2000).

  9. 9

    Mourou, G.A., Stancampiano, C.V., Antonetti, A. & Orszag, A. Picosecond microwave pulses generated with a subpicosecond laser driven semiconductor switch. Appl. Phys. Lett. 39, 295–296 (1981).

  10. 10

    Gornik, E. & Kersting, R. in Semiconductors and Semimetals (ed. Tsen, K. T.) (Academic, San Diego, 2001).

  11. 11

    Leitenstorfer, A., Hunsche, S., Shah, J., Nuss, M.C. & Knox, W.H. Femtosecond charge transport in polar semiconductors. Phys. Rev. Lett. 82, 5140–5142 (1999).

  12. 12

    Leitenstorfer, A., Hunsche, S., Shah, J., Nuss, M.C. & Knox, W.H. Femtosecond high-field transport in compound semiconductors. Phys. Rev. B. 61, 16642–16652 (1999).

  13. 13

    Darrow, J.T., Zhang, X.-C., Auston, D.H. & Morse, J.D. Saturation properties of large-aperture photoconductor antennas. IEEE J. Quantum Electron. 28, 1607–1616 (1992).

  14. 14

    Zhao, G., Schouten, R.N., van der Valk, N., Wenckebach, W.T. & Planken, P.C.M. Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter. Rev. Sci. Instrum. 73, 1715–1719 (2002).

  15. 15

    Katzenellenbogen, N. & Grischkowsky, D. Efficient generation of 380 fs pulses of THz radiation by ultrafast laser pulse excitation of a biased metal-semiconductor interface. Appl. Phys. Lett. 58, 222–224 (1991).

  16. 16

    Bass, M., Franken, P.A., Ward, J.F. & Weinreich, G. Optical rectification. Phys. Rev. Lett. 9, 446–448 (1962).

  17. 17

    Yang, K.H., Richards, P.L. & Shen, Y.R. Generation of far-infrared radiation by picosecond light pulses in LiNbO3 . Appl. Phys. Lett. 19, 320–323 (1971).

  18. 18

    Zhang, X.-C., Jin, Y., Yang, K. & Schowalter, L.J. Resonsant nonlinear susceptibility near the GaAs band gap. Phys. Rev. Lett. 69, 2303–2306 (1992).

  19. 19

    Rice, A. et al. Terahertz optical rectification from <110> zinc-blende crystals. Appl. Phys. Lett. 64, 1324–1326 (1994).

  20. 20

    Zhang, X.-C. et al. Terahertz optical rectification from a nonlinear organic crystal. Appl. Phys. Lett. 61, 3080–3082 (1992).

  21. 21

    Bonvalet, A., Joffre, M., Martin, J.-L. & Migus, A. Generation of ultrabroadband femtosecond pulses in the mid-infrared by optical rectification of 15 fs light pulses at 100 MHz repetition rate. Appl. Phys. Lett. 67, 2907–2909 (1995).

  22. 22

    Kaindl, R.A., Eickemeyer, F., Woerner, M. & Elsaesser, T. Broadband phase-matched difference frequency mixing of femtoseconds pulses in GaSe: Experiment and theory. Appl. Phys. Lett. 75, 1060–1062 (1999).

  23. 23

    Huber, R., Brodschelm, A., Tauser, F. & Leitenstorfer, A. Generation and fields-resolved detection of femtoseconds electromagnetic pulses tunable up to 41 THz. Appl. Phys. Lett. 76, 3191–3193 (2000).

  24. 24

    Wiltse, J.C. History of millimeter and submillimeter waves. IEEE Trans. Microwave Theory Technol. 32, 1118–1127, (1984).

  25. 25

    Siegel, P.H. Terahertz technology. IEEE Trans. Microwave Theory Technol. 50, 910–928 (2002).

  26. 26

    Maiwald, F. et al. in IEEE Microwave Theory and Techniques Society International Symposium Digest (ed. Sigmon, B.) Vol. 3 1637–1640 (IEEE, Piscataway, New Jersey, 2001).

  27. 27

    Ryzhii, V., Khmyrova, I. & Shur, M.S. Terahertz photomixing in quantum well structures using resonant excitation of plasma oscillations. J. Appl. Phys. 91, 1875–1881 (2002).

  28. 28

    Williams, G.P. Far-IR/THz radiation from the Jefferson Laboratory, energy recovered linac, free electron laser. Rev. Sci. Instrum. 73, 1461–1463 (2002).

  29. 29

    Morris, R. & Shen, Y.R. Theory of far-infrared generation by optical mixing. Phys. Rev. A, 15, 1143–1156 (1977).

  30. 30

    Brown, E.R., McIntosh, K.A., Nichols, K.B. & Dennis, C.L. Photomixing up to 3.8 THz in low-temperature-grown GaAs. Appl. Phys. Lett. 66, 285–287 (1995).

  31. 31

    Kawase, K., Sato, M., Taniuchi, T. & Ito, H. Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler. Appl. Phys. Lett. 68 2483–2485 (1996).

  32. 32

    Shikata, J., Kawase, K., Sato, M., Taniuchi, T. & Ito, H. Enhancement of THz-wave output from LiNbO3 optical parametric oscillators by cryogenic cooling. Opt. Lett. 24, 202–204 (1999).

  33. 33

    Kawase, K., Shikata, J., Imai, K. & Ito, H. Transform-limited, narrow-linewidth, terahertz-wave parametric generator. Appl. Phys. Lett. 78, 2819–2821 (2001).

  34. 34

    Kadow, C., Jackson, A.W., Gossard, A.C., Matsuura, S. & Blake, G.A. Self-assembled ErAs islands in GaAs for optical-heterodyne terahertz generation. Appl. Phys. Lett. 76, 3510–3512 (2000).

  35. 35

    Komiyama, S. Far-infrared emission from population-inverted hot-carrier system in p-Ge. Phys. Rev. Lett. 48, 271 (1982).

  36. 36

    Gousev, Yu.P. et al. Widely tunable continuous wave THz laser. Appl. Phys. Lett. 75, 757–759 (1999).

  37. 37

    Faist, J. et al. Quantum cascade laser. Science 264, 553–556 (1994).

  38. 38

    Komiyama, S., Astaflev, O., Antonov, V., Kutsuwa, T. & Hirai, H. A single-photon detector in the far-infrared range. Nature 403, 405–407 (2000).

  39. 39

    Gaidis, M.C. et al. A 2.5 THz receiver front-end for spaceborne applications. IEEE Trans. Microwave Theory Technol. 48, 733–739 (2000).

  40. 40

    Dolan, G.J., Phillips, T.G. & Woody, D.P. Low noise 115 GHz mixing in superconductor oxide barrier tunnel junctions. Appl. Phys. Lett. 34, 347–349 (1979).

  41. 41

    Carlstrom, J.E. & Zmuidzinas, J. in Reviews of Radio Science (ed. Stone, W.R.) 1193–1995 (Oxford Univ. Press, Oxford, UK, 1996).

  42. 42

    Knap, W. et al. Resonant detection of sub-terahertz radiation by plasma waves in the submicron field effect transistor. Appl. Phys. Lett. 80, 3433–3435 (2002).

  43. 43

    Valdmanis, J.A., Mourou, G.A. & Gabel, C.W. Subpicosecond electrical sampling. IEEE J. of Quantum Electron. 19, 664–667 (1983).

  44. 44

    Wu, Q. & Zhang, X.-C. Free-space electro-optic sampling of terahertz beams. Appl. Phys. Lett. 67, 3523–3525 (1995).

  45. 45

    Brodschelm, A., Tauser, F., Huber, R., Sohn, J.Y. & Leitenstorfer, A. in Ultrafast Phenomena XII (eds. Elsaesser, T., Mukhamel, S., Murnane, M.M. & Scherer, N.F.) (Springer, Berlin, 2000).

  46. 46

    Kono, S., Tani, M., Gu P. & Sakai, K. Detection of up to 20 THz with a low-temperature-grown GaAs photoconductive antenna gated with 15 fs light pulses. Appl. Phys. Lett. 77, 4104–4106 (2001).

  47. 47

    Holland, W.S. et al. Submillimeter images of dusty debris around nearby stars. Nature 392, 788–791 (1998).

  48. 48

    van Exter, M., Fattinger, C. & Grischkowsky, D. Terahertz time-domain spectroscopy of water vapor. Opt. Lett. 14, 1128–1130 (1989).

  49. 49

    van Exter, M. & Grischkowsky, D. Characterization of an optoelectronic terahertz beam system. IEEE Trans. Microwave Theory Tech. 38, 1684–1691 (1990).

  50. 50

    Grischkowsky, D., Keiding, S., van Exter, M. & Fattinger, C. Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. J. Opt. Safety Am. B7, 2006–2015 (1990).

  51. 51

    Jiang, Z., Li, M. & Zhang, X.-C. Dielectric constant measurement of thin films by differential time-domain spectroscopy. Appl. Phys. Lett. 76, 3221–3223 (2000).

  52. 52

    Kaindl, R.A. et al. Far-infrared optical conductivity gap in superconducting MgB2 films. Phys. Rev. Lett. 88, 027003 (2002).

  53. 53

    Hu, B.B. & Nuss, M.C. Imaging with terahertz waves. Opt. Lett. 20, 1716–1718 (1995).

  54. 54

    Mittleman, D.M., Jacobsen, R.H. & Nuss, M.C. T-ray imaging. IEEE J. Sel. Top. Quantum Electron. 2, 689–692 (1996).

  55. 55

    Loffler, T. et al. Terahertz dark-field imaging of biomedical tissue. Optics Express 9, 616–621 (2001).

  56. 56

    Cheville, R.A. & Grischkowsky, D. Far-infrared terahertz time-domain spectroscopy of flames. Opt. Lett. 20, 1646–1648 (1995).

  57. 57

    Ferguson, B., Wang, S., Gray, D., Abbott, D. & Zhang, X.-C. T-ray computed tomography. Opt. Lett. 27, 1312–1314 (2002).

  58. 58

    Ferguson, B., Wang, S., Gray, D., Abbott, D. & Zhang, X.-C. Towards functional 3D THz imaging. Phys. Med. Biol. (in the press).

  59. 59

    Mitrofanov, O. et al. Collection-mode near-field imaging with 0.5-THz pulses. IEEE J. Sel. Top. Quantum. Electron. 7, 600–607 (2001).

  60. 60

    Han, P.Y., Cho, G.C. & Zhang, X.-C. Time-domain transillumination of biological tissues with terahertz pulses. Opt. Lett. 25, 242–245 (2000).

  61. 61

    Woodward, R.M. et al. in OSA Trends in Optics and Photonics (TOPS), Vol 56, Conference on Lasers and Electro-optics. (OSA, Washington DC, 2001).

  62. 62

    Markelz, A.G., Roitberg, A. & Heilweil, E.J. Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz. Chem. Phys. Lett. 320, 42–48 (2000).

  63. 63

    Walther, M., Fischer, B., Schall, M., Helm H. & Uhd Jepsen, P. Far-infrared vibrational spectra of all-trans, 9-cis and 13-cis retinal measured by THz time-domain spectroscopy. Chem. Phys. Lett. 332, 389–395 (2000).

  64. 64

    Brucherseifer, M. et al. Label-free probing of the binding state of DNA by time-domain terahertz sensing. Appl. Phys. Lett. 77, 4049–4051 (2000).

  65. 65

    Mickan, S.P. et al. Label-free bioaffinity detection using Terahertz technology. Phys. Med. Biol. (in the press).

  66. 66

    Mickan, S.P., Abbott, D. Munch, J. & Zhang, X.-C. Noise reduction in Terahertz thin film measurements using a double modulated differential technique. Fluct. Noise Lett. 2, 13–28 (2002).

  67. 67

    Menikh, A., MacColl, R., Mannella, C.A. & Zhang, X.-C. Terahertz biosensing technology: Frontiers and progress. Chem. Phys. Chem. (in the press).

  68. 68

    Cole, B.E., Williams, J.B., King, B.T., Sherwin, M.S. & Stanley, C.R. Coherent manipulation of semiconductor quantum bits with terahertz radiation. Nature 410, 60–65 (2001).

Download references

Acknowledgements

This work was supported in part by the US Army Research Office, the National Science Foundation, the Australian Research Council and the Cooperative Research Centre for Sensor, Signal and Information Processing. The authors thank D. Abbott, D. Gray, A. Menikh, S. P. Mickan and the Australian-American Fulbright Commission.

Author information

Correspondence to Xi-Cheng Zhang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ferguson, B., Zhang, X. Materials for terahertz science and technology. Nature Mater 1, 26–33 (2002). https://doi.org/10.1038/nmat708

Download citation

Further reading