Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Materials for terahertz science and technology

Abstract

Terahertz spectroscopy systems use far-infrared radiation to extract molecular spectral information in an otherwise inaccessible portion of the electromagnetic spectrum. Materials research is an essential component of modern terahertz systems: novel, higher-power terahertz sources rely heavily on new materials such as quantum cascade structures. At the same time, terahertz spectroscopy and imaging provide a powerful tool for the characterization of a broad range of materials, including semiconductors and biomolecules.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The electromagnetic spectrum.
Figure 2: Illustration of a THz-TDS pump probe system.
Figure 3: Simplified conduction band structure of the THz quantum cascade laser demonstrated by Kohler et al . (after ref. 1).
Figure 4: A broadband THz pulse with a frequency spectrum extending into the infrared.
Figure 5: T-ray computed tomography image of two plastic cylinders (after ref. 57).
Figure 6: THz image of an onion cell membrane (after ref. 60).
Figure 7: A biotin-avidin T-ray biosensor (after ref. 65).

References

  1. Kohler, R. et al. Terahertz semiconductor-heterostructure laser. Nature 417, 156–159 (2002).

    Article  Google Scholar 

  2. Nagel, M., Haring Bolivar, P., Brucherseifer, M. & Kurz, H. Integrated THz technology for label-free genetic diagnostics. Appl. Phys. Lett. 80, 154–156 (2002).

    Article  CAS  Google Scholar 

  3. Huber, R. et al. How many-particle interactions develop after ultrafast excitation of an electron-hole plasma. Nature 414, 286–289 (2001).

    Article  CAS  Google Scholar 

  4. Auston, D.H., Cheung, K.P., Valdmanis, J.A. & Kleinman, D.A. Cherenkov radiation from femtosecond optical pulses in electro-optic media. Phys. Rev. Lett. 53, 1555–1558 (1984).

    Article  CAS  Google Scholar 

  5. Fattinger, Ch. & Grischkowsky, D. Point source terahertz optics. Appl. Phys. Lett. 53, 1480–1482 (1988).

    Article  Google Scholar 

  6. Ferguson, B. & Abbott, D. De-noising techniques for terahertz responses of biological samples. Microelectron. J. 32, 943–953 (2001).

    Article  Google Scholar 

  7. Hashimshony, D., Zigler, A. & Papadopoulos, D. Conversion of electrostatic to electromagnetic waves by superluminous ionization fronts. Phys. Rev. Lett. 86, 2806–2809 (2001).

    Article  CAS  Google Scholar 

  8. van der Weide, D.W., Murakowski, J. & Keilmann, F. Gas-absorption spectroscopy with electronic terahertz techniques. IEEE Trans. Microwave Theory Tech. 48, 740–743 (2000).

    Article  Google Scholar 

  9. Mourou, G.A., Stancampiano, C.V., Antonetti, A. & Orszag, A. Picosecond microwave pulses generated with a subpicosecond laser driven semiconductor switch. Appl. Phys. Lett. 39, 295–296 (1981).

    Article  Google Scholar 

  10. Gornik, E. & Kersting, R. in Semiconductors and Semimetals (ed. Tsen, K. T.) (Academic, San Diego, 2001).

    Google Scholar 

  11. Leitenstorfer, A., Hunsche, S., Shah, J., Nuss, M.C. & Knox, W.H. Femtosecond charge transport in polar semiconductors. Phys. Rev. Lett. 82, 5140–5142 (1999).

    Article  CAS  Google Scholar 

  12. Leitenstorfer, A., Hunsche, S., Shah, J., Nuss, M.C. & Knox, W.H. Femtosecond high-field transport in compound semiconductors. Phys. Rev. B. 61, 16642–16652 (1999).

    Article  Google Scholar 

  13. Darrow, J.T., Zhang, X.-C., Auston, D.H. & Morse, J.D. Saturation properties of large-aperture photoconductor antennas. IEEE J. Quantum Electron. 28, 1607–1616 (1992).

    Article  Google Scholar 

  14. Zhao, G., Schouten, R.N., van der Valk, N., Wenckebach, W.T. & Planken, P.C.M. Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter. Rev. Sci. Instrum. 73, 1715–1719 (2002).

    Article  CAS  Google Scholar 

  15. Katzenellenbogen, N. & Grischkowsky, D. Efficient generation of 380 fs pulses of THz radiation by ultrafast laser pulse excitation of a biased metal-semiconductor interface. Appl. Phys. Lett. 58, 222–224 (1991).

    Article  CAS  Google Scholar 

  16. Bass, M., Franken, P.A., Ward, J.F. & Weinreich, G. Optical rectification. Phys. Rev. Lett. 9, 446–448 (1962).

    Article  CAS  Google Scholar 

  17. Yang, K.H., Richards, P.L. & Shen, Y.R. Generation of far-infrared radiation by picosecond light pulses in LiNbO3 . Appl. Phys. Lett. 19, 320–323 (1971).

    Article  CAS  Google Scholar 

  18. Zhang, X.-C., Jin, Y., Yang, K. & Schowalter, L.J. Resonsant nonlinear susceptibility near the GaAs band gap. Phys. Rev. Lett. 69, 2303–2306 (1992).

    Article  CAS  Google Scholar 

  19. Rice, A. et al. Terahertz optical rectification from <110> zinc-blende crystals. Appl. Phys. Lett. 64, 1324–1326 (1994).

    Article  CAS  Google Scholar 

  20. Zhang, X.-C. et al. Terahertz optical rectification from a nonlinear organic crystal. Appl. Phys. Lett. 61, 3080–3082 (1992).

    Article  CAS  Google Scholar 

  21. Bonvalet, A., Joffre, M., Martin, J.-L. & Migus, A. Generation of ultrabroadband femtosecond pulses in the mid-infrared by optical rectification of 15 fs light pulses at 100 MHz repetition rate. Appl. Phys. Lett. 67, 2907–2909 (1995).

    Article  CAS  Google Scholar 

  22. Kaindl, R.A., Eickemeyer, F., Woerner, M. & Elsaesser, T. Broadband phase-matched difference frequency mixing of femtoseconds pulses in GaSe: Experiment and theory. Appl. Phys. Lett. 75, 1060–1062 (1999).

    Article  CAS  Google Scholar 

  23. Huber, R., Brodschelm, A., Tauser, F. & Leitenstorfer, A. Generation and fields-resolved detection of femtoseconds electromagnetic pulses tunable up to 41 THz. Appl. Phys. Lett. 76, 3191–3193 (2000).

    Article  CAS  Google Scholar 

  24. Wiltse, J.C. History of millimeter and submillimeter waves. IEEE Trans. Microwave Theory Technol. 32, 1118–1127, (1984).

    Article  Google Scholar 

  25. Siegel, P.H. Terahertz technology. IEEE Trans. Microwave Theory Technol. 50, 910–928 (2002).

    Article  Google Scholar 

  26. Maiwald, F. et al. in IEEE Microwave Theory and Techniques Society International Symposium Digest (ed. Sigmon, B.) Vol. 3 1637–1640 (IEEE, Piscataway, New Jersey, 2001).

    Google Scholar 

  27. Ryzhii, V., Khmyrova, I. & Shur, M.S. Terahertz photomixing in quantum well structures using resonant excitation of plasma oscillations. J. Appl. Phys. 91, 1875–1881 (2002).

    Article  CAS  Google Scholar 

  28. Williams, G.P. Far-IR/THz radiation from the Jefferson Laboratory, energy recovered linac, free electron laser. Rev. Sci. Instrum. 73, 1461–1463 (2002).

    Article  CAS  Google Scholar 

  29. Morris, R. & Shen, Y.R. Theory of far-infrared generation by optical mixing. Phys. Rev. A, 15, 1143–1156 (1977).

    Article  Google Scholar 

  30. Brown, E.R., McIntosh, K.A., Nichols, K.B. & Dennis, C.L. Photomixing up to 3.8 THz in low-temperature-grown GaAs. Appl. Phys. Lett. 66, 285–287 (1995).

    Article  CAS  Google Scholar 

  31. Kawase, K., Sato, M., Taniuchi, T. & Ito, H. Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler. Appl. Phys. Lett. 68 2483–2485 (1996).

    Article  CAS  Google Scholar 

  32. Shikata, J., Kawase, K., Sato, M., Taniuchi, T. & Ito, H. Enhancement of THz-wave output from LiNbO3 optical parametric oscillators by cryogenic cooling. Opt. Lett. 24, 202–204 (1999).

    Article  CAS  Google Scholar 

  33. Kawase, K., Shikata, J., Imai, K. & Ito, H. Transform-limited, narrow-linewidth, terahertz-wave parametric generator. Appl. Phys. Lett. 78, 2819–2821 (2001).

    Article  CAS  Google Scholar 

  34. Kadow, C., Jackson, A.W., Gossard, A.C., Matsuura, S. & Blake, G.A. Self-assembled ErAs islands in GaAs for optical-heterodyne terahertz generation. Appl. Phys. Lett. 76, 3510–3512 (2000).

    Article  CAS  Google Scholar 

  35. Komiyama, S. Far-infrared emission from population-inverted hot-carrier system in p-Ge. Phys. Rev. Lett. 48, 271 (1982).

  36. Gousev, Yu.P. et al. Widely tunable continuous wave THz laser. Appl. Phys. Lett. 75, 757–759 (1999).

    Article  CAS  Google Scholar 

  37. Faist, J. et al. Quantum cascade laser. Science 264, 553–556 (1994).

    Article  CAS  Google Scholar 

  38. Komiyama, S., Astaflev, O., Antonov, V., Kutsuwa, T. & Hirai, H. A single-photon detector in the far-infrared range. Nature 403, 405–407 (2000).

    Article  CAS  Google Scholar 

  39. Gaidis, M.C. et al. A 2.5 THz receiver front-end for spaceborne applications. IEEE Trans. Microwave Theory Technol. 48, 733–739 (2000).

    Article  Google Scholar 

  40. Dolan, G.J., Phillips, T.G. & Woody, D.P. Low noise 115 GHz mixing in superconductor oxide barrier tunnel junctions. Appl. Phys. Lett. 34, 347–349 (1979).

    Article  CAS  Google Scholar 

  41. Carlstrom, J.E. & Zmuidzinas, J. in Reviews of Radio Science (ed. Stone, W.R.) 1193–1995 (Oxford Univ. Press, Oxford, UK, 1996).

    Google Scholar 

  42. Knap, W. et al. Resonant detection of sub-terahertz radiation by plasma waves in the submicron field effect transistor. Appl. Phys. Lett. 80, 3433–3435 (2002).

    Article  CAS  Google Scholar 

  43. Valdmanis, J.A., Mourou, G.A. & Gabel, C.W. Subpicosecond electrical sampling. IEEE J. of Quantum Electron. 19, 664–667 (1983).

    Article  Google Scholar 

  44. Wu, Q. & Zhang, X.-C. Free-space electro-optic sampling of terahertz beams. Appl. Phys. Lett. 67, 3523–3525 (1995).

    Article  CAS  Google Scholar 

  45. Brodschelm, A., Tauser, F., Huber, R., Sohn, J.Y. & Leitenstorfer, A. in Ultrafast Phenomena XII (eds. Elsaesser, T., Mukhamel, S., Murnane, M.M. & Scherer, N.F.) (Springer, Berlin, 2000).

    Google Scholar 

  46. Kono, S., Tani, M., Gu P. & Sakai, K. Detection of up to 20 THz with a low-temperature-grown GaAs photoconductive antenna gated with 15 fs light pulses. Appl. Phys. Lett. 77, 4104–4106 (2001).

    Article  Google Scholar 

  47. Holland, W.S. et al. Submillimeter images of dusty debris around nearby stars. Nature 392, 788–791 (1998).

    Article  CAS  Google Scholar 

  48. van Exter, M., Fattinger, C. & Grischkowsky, D. Terahertz time-domain spectroscopy of water vapor. Opt. Lett. 14, 1128–1130 (1989).

    Article  CAS  Google Scholar 

  49. van Exter, M. & Grischkowsky, D. Characterization of an optoelectronic terahertz beam system. IEEE Trans. Microwave Theory Tech. 38, 1684–1691 (1990).

    Article  Google Scholar 

  50. Grischkowsky, D., Keiding, S., van Exter, M. & Fattinger, C. Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. J. Opt. Safety Am. B7, 2006–2015 (1990).

    Article  Google Scholar 

  51. Jiang, Z., Li, M. & Zhang, X.-C. Dielectric constant measurement of thin films by differential time-domain spectroscopy. Appl. Phys. Lett. 76, 3221–3223 (2000).

    Article  CAS  Google Scholar 

  52. Kaindl, R.A. et al. Far-infrared optical conductivity gap in superconducting MgB2 films. Phys. Rev. Lett. 88, 027003 (2002).

    Article  Google Scholar 

  53. Hu, B.B. & Nuss, M.C. Imaging with terahertz waves. Opt. Lett. 20, 1716–1718 (1995).

    Article  CAS  Google Scholar 

  54. Mittleman, D.M., Jacobsen, R.H. & Nuss, M.C. T-ray imaging. IEEE J. Sel. Top. Quantum Electron. 2, 689–692 (1996).

    Article  Google Scholar 

  55. Loffler, T. et al. Terahertz dark-field imaging of biomedical tissue. Optics Express 9, 616–621 (2001).

    Article  CAS  Google Scholar 

  56. Cheville, R.A. & Grischkowsky, D. Far-infrared terahertz time-domain spectroscopy of flames. Opt. Lett. 20, 1646–1648 (1995).

    Article  CAS  Google Scholar 

  57. Ferguson, B., Wang, S., Gray, D., Abbott, D. & Zhang, X.-C. T-ray computed tomography. Opt. Lett. 27, 1312–1314 (2002).

    Article  Google Scholar 

  58. Ferguson, B., Wang, S., Gray, D., Abbott, D. & Zhang, X.-C. Towards functional 3D THz imaging. Phys. Med. Biol. (in the press).

  59. Mitrofanov, O. et al. Collection-mode near-field imaging with 0.5-THz pulses. IEEE J. Sel. Top. Quantum. Electron. 7, 600–607 (2001).

    Article  CAS  Google Scholar 

  60. Han, P.Y., Cho, G.C. & Zhang, X.-C. Time-domain transillumination of biological tissues with terahertz pulses. Opt. Lett. 25, 242–245 (2000).

    Article  CAS  Google Scholar 

  61. Woodward, R.M. et al. in OSA Trends in Optics and Photonics (TOPS), Vol 56, Conference on Lasers and Electro-optics. (OSA, Washington DC, 2001).

    Google Scholar 

  62. Markelz, A.G., Roitberg, A. & Heilweil, E.J. Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz. Chem. Phys. Lett. 320, 42–48 (2000).

    Article  CAS  Google Scholar 

  63. Walther, M., Fischer, B., Schall, M., Helm H. & Uhd Jepsen, P. Far-infrared vibrational spectra of all-trans, 9-cis and 13-cis retinal measured by THz time-domain spectroscopy. Chem. Phys. Lett. 332, 389–395 (2000).

    Article  CAS  Google Scholar 

  64. Brucherseifer, M. et al. Label-free probing of the binding state of DNA by time-domain terahertz sensing. Appl. Phys. Lett. 77, 4049–4051 (2000).

    Article  CAS  Google Scholar 

  65. Mickan, S.P. et al. Label-free bioaffinity detection using Terahertz technology. Phys. Med. Biol. (in the press).

  66. Mickan, S.P., Abbott, D. Munch, J. & Zhang, X.-C. Noise reduction in Terahertz thin film measurements using a double modulated differential technique. Fluct. Noise Lett. 2, 13–28 (2002).

    Article  Google Scholar 

  67. Menikh, A., MacColl, R., Mannella, C.A. & Zhang, X.-C. Terahertz biosensing technology: Frontiers and progress. Chem. Phys. Chem. (in the press).

  68. Cole, B.E., Williams, J.B., King, B.T., Sherwin, M.S. & Stanley, C.R. Coherent manipulation of semiconductor quantum bits with terahertz radiation. Nature 410, 60–65 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the US Army Research Office, the National Science Foundation, the Australian Research Council and the Cooperative Research Centre for Sensor, Signal and Information Processing. The authors thank D. Abbott, D. Gray, A. Menikh, S. P. Mickan and the Australian-American Fulbright Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi-Cheng Zhang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ferguson, B., Zhang, XC. Materials for terahertz science and technology. Nature Mater 1, 26–33 (2002). https://doi.org/10.1038/nmat708

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat708

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing