Abstract
Small clusters have a range of unique physical and chemical phenomena that are strongly size dependent. However, analysis of these phenomena often assumes that thermodynamic equilibrium conditions prevail. We compare experimentally measured and ab initio computed photoelectron spectra of bare and deuterated silicon cluster anions produced in a plasma environment. We find that the isomers detected experimentally are usually not the ground-state isomers, but metastable ones, which indicates that cluster relaxation is strongly limited kinetically by a dwell time that is much shorter than the relaxation time. We show that, under these conditions, the highest electron affinity replaces the traditional lowest total energy as the appropriate criterion for predicting isomer structures. These findings demonstrate that a stringent examination of non-equilibrium effects can be crucial for a correct analysis of cluster properties.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Jellinek, J. (ed.) Theory of Atomic and Molecular Clusters : with a Glimpse at Experiments (Springer, Berlin, 1999)
Kawazoe, Y., Kondow, T. & Ohno, K. Clusters and Nanomaterials: Theory and Experiment (Springer, Berlin, 2001)
Car, R. & Parrinello, M. Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 55, 2471–2474 (1985)
Binggeli, N., Martins, J. L. & Chelikowsky, J. R. Simulation of Si clusters via Langevin molecular dynamics with quantum forces. Phys. Rev. Lett. 68, 2956–2959 (1992)
Barnett, R. N. & Landman, U. Born-Oppenheimer molecular-dynamics simulations of finite systems: Structure and dynamics of (H2O)2 . Phys. Rev. B 48, 2081–2097 (1993)
Marzari, N., Vanderbilt, D. & Payne, M. C. Ensemble density-functional theory for ab initio molecular dynamics of metals and finite-temperature insulators. Phys. Rev. Lett. 79, 1337–1340 (1997)
Geissler, P. L., Dellago, C., Chandler, D., Hutter, J. & Parrinello, M. Autoionization in liquid water. Science 291, 2121–2124 (2001)
Passerone, D. & Parrinello, M. Action-derived molecular dynamics in the study of rare events. Phys. Rev. Lett. 87, 108302 (2001)
Ho, K.-M. et al. Structures of medium-sized silicon clusters. Nature 392, 582–585 (1998)
Wales, D. J. & Scheraga, H. A. Global optimization of clusters, crystals, and biomolecules. Science 285, 1368–1372 (1999)
Wang, B., Yin, S., Wang, G., Buldum, A. & Zhao, J. Novel structures and properties of gold nanowires. Phys. Rev. Lett. 86, 2046–2049 (2001)
Kronik, L., Vasiliev, I., Jain, M. & Chelikowsky, J. R. Ab initio structures and polarizabilities of sodium clusters. J. Chem. Phys. 115, 4322–4322 (2001)
Grossman, J. C. & Mitas, L. Quantum Monte Carlo determination of electronic and structural properties of Sin clusters (n ≤ 20). Phys. Rev. Lett. 74, 1323–1326 (1995)
Binggeli, N. & Chelikowsky, J. R. Photoemission spectra and structures of Si clusters at finite temperature. Phys. Rev. Lett. 75, 493–496 (1995)
Müller, J. et al. Spectroscopic evidence for the tricapped trigonal prism structure of semiconductor clusters. Phys. Rev. Lett. 85, 1666–1669 (2000)
Raghavachari, K. & Rohlfing, C. M. Electronic structure of the negative ions Si2-–Si10-: electron affinities of small silicon clusters. J. Chem. Phys. 94, 3670–3678 (1991)
Wei, S., Barnett, R. N. & Landman, U. Energetics and structures of neutral and charged Sin (n < ∼10) and sodium-doped SinNa clusters. Phys. Rev. B 55, 7935–7944 (1997)
Xu, C., Taylor, T. R., Burton, G. R. & Neumark, D. M. Vibrationally resolved photoelectron spectroscopy of silicon cluster anions Sin- (n = 3–7). J. Chem. Phys. 108, 1395–1406 (1998)
Shvartsburg, A. A., Liu, B., Jarrold, M. F. & Ho, K.-M. Modeling ionic mobilities by scattering on electronic density isosurfaces: application to silicon cluster anions. J. Chem. Phys. 112, 4517–4526 (2000)
Xu, C., Taylor, T. R., Burton, G. R. & Neumark, D. M. Photoelectron spectroscopy of SinH (n = 2–4) anions. J. Chem. Phys. 108, 7645–7652 (1998)
Chesnovsky, O. et al. Ultraviolet photoelectron spectroscopy of semiconductor clusters: silicon and germanium. Chem. Phys. Lett. 138, 119–124 (1987)
Jurnickel, G., Fraunheim, T. & Jackson, K. A. Structure and energetics of SinNm clusters: growth pathways in a heterogenous cluster system. J. Chem. Phys. 112, 1295–1305 (2000)
Boltalina, O. V., Dashkova, E. V. & Sidorov, L. N. Gibbs energies of gas-phase electron transfer reactions involving the larger fullerene anions. Chem. Phys. Lett. 256, 253–260 (1996)
Hill, T. L. Introduction to Statistical Thermodynamics Ch. 11 (Dover, New York, 1986)
Cha, C. Y., Ganteför, G. & Eberhardt, W. New experimental setup for photoelectron spectroscopy on cluster anions. Rev. Sci. Instrum. 63, 5661–5666 (1992)
Burkart, S. et al. Experimental verification of the high stability of Al13H: A building block of a new type of cluster material? Chem. Phys. Lett. 301, 546–550 (1999)
Handschuh, H., Ganteför, G., Kessler, B., Bechthold, P. S. & Eberhardt, W. Stable configurations of carbon clusters: chains, rings, and fullerenes. Phys. Rev. Lett. 74, 1095–1098 (1995)
Handschuh, H., Ganteför, G. & Eberhardt, W. Vibrational spectroscopy of clusters using a “magnetic bottle” electron spectrometer. Rev. Sci. Instrum. 66, 3838–3843 (1995)
Chelikowsky, J. R., Troullier, N. & Saad, Y. Finite-difference-pseudopotential method: Electronic structure calculations without a basis. Phys. Rev. Lett. 72, 1240–1243 (1994)
Woicik, J. W. et al. Hybridization and bond-orbital components in site-specific photoelectron spectra of rutile TiO2 . Phys. Rev. Lett. 89, 74401 (2002)
Acknowledgements
We acknowledge the support provided by the National Science Foundation, the US Department of Energy, the Minnesota Supercomputer Institute, the Deutsche Forschungsgemeinschaft and the Sonderforschungsbereich 513.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing financial interests.
Rights and permissions
About this article
Cite this article
Kronik, L., Fromherz, R., Ko, E. et al. Highest electron affinity as a predictor of cluster anion structures. Nature Mater 1, 49–53 (2002). https://doi.org/10.1038/nmat704
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmat704
This article is cited by
-
Hydrocarbon analogues of boron clusters — planarity, aromaticity and antiaromaticity
Nature Materials (2003)