Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Highest electron affinity as a predictor of cluster anion structures

Abstract

Small clusters have a range of unique physical and chemical phenomena that are strongly size dependent. However, analysis of these phenomena often assumes that thermodynamic equilibrium conditions prevail. We compare experimentally measured and ab initio computed photoelectron spectra of bare and deuterated silicon cluster anions produced in a plasma environment. We find that the isomers detected experimentally are usually not the ground-state isomers, but metastable ones, which indicates that cluster relaxation is strongly limited kinetically by a dwell time that is much shorter than the relaxation time. We show that, under these conditions, the highest electron affinity replaces the traditional lowest total energy as the appropriate criterion for predicting isomer structures. These findings demonstrate that a stringent examination of non-equilibrium effects can be crucial for a correct analysis of cluster properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photoelectron spectra (PES) of selected Si m D n - clusters ( m = 6, 8 and 10; n = 1 and 2).
Figure 2: Photoelectron spectra of several clusters obeying the highest vertical electron affinity (VEA) rule.
Figure 3: Photoelectron spectra of the two clusters disobeying the highest VEA rule.

Similar content being viewed by others

References

  1. Jellinek, J. (ed.) Theory of Atomic and Molecular Clusters : with a Glimpse at Experiments (Springer, Berlin, 1999)

  2. Kawazoe, Y., Kondow, T. & Ohno, K. Clusters and Nanomaterials: Theory and Experiment (Springer, Berlin, 2001)

  3. Car, R. & Parrinello, M. Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 55, 2471–2474 (1985)

    Article  CAS  Google Scholar 

  4. Binggeli, N., Martins, J. L. & Chelikowsky, J. R. Simulation of Si clusters via Langevin molecular dynamics with quantum forces. Phys. Rev. Lett. 68, 2956–2959 (1992)

    Article  CAS  Google Scholar 

  5. Barnett, R. N. & Landman, U. Born-Oppenheimer molecular-dynamics simulations of finite systems: Structure and dynamics of (H2O)2 . Phys. Rev. B 48, 2081–2097 (1993)

    Article  CAS  Google Scholar 

  6. Marzari, N., Vanderbilt, D. & Payne, M. C. Ensemble density-functional theory for ab initio molecular dynamics of metals and finite-temperature insulators. Phys. Rev. Lett. 79, 1337–1340 (1997)

    Article  CAS  Google Scholar 

  7. Geissler, P. L., Dellago, C., Chandler, D., Hutter, J. & Parrinello, M. Autoionization in liquid water. Science 291, 2121–2124 (2001)

    Article  CAS  Google Scholar 

  8. Passerone, D. & Parrinello, M. Action-derived molecular dynamics in the study of rare events. Phys. Rev. Lett. 87, 108302 (2001)

    Article  CAS  Google Scholar 

  9. Ho, K.-M. et al. Structures of medium-sized silicon clusters. Nature 392, 582–585 (1998)

    Article  CAS  Google Scholar 

  10. Wales, D. J. & Scheraga, H. A. Global optimization of clusters, crystals, and biomolecules. Science 285, 1368–1372 (1999)

    Article  CAS  Google Scholar 

  11. Wang, B., Yin, S., Wang, G., Buldum, A. & Zhao, J. Novel structures and properties of gold nanowires. Phys. Rev. Lett. 86, 2046–2049 (2001)

    Article  CAS  Google Scholar 

  12. Kronik, L., Vasiliev, I., Jain, M. & Chelikowsky, J. R. Ab initio structures and polarizabilities of sodium clusters. J. Chem. Phys. 115, 4322–4322 (2001)

    Article  CAS  Google Scholar 

  13. Grossman, J. C. & Mitas, L. Quantum Monte Carlo determination of electronic and structural properties of Sin clusters (n ≤ 20). Phys. Rev. Lett. 74, 1323–1326 (1995)

    Article  CAS  Google Scholar 

  14. Binggeli, N. & Chelikowsky, J. R. Photoemission spectra and structures of Si clusters at finite temperature. Phys. Rev. Lett. 75, 493–496 (1995)

    Article  CAS  Google Scholar 

  15. Müller, J. et al. Spectroscopic evidence for the tricapped trigonal prism structure of semiconductor clusters. Phys. Rev. Lett. 85, 1666–1669 (2000)

    Article  Google Scholar 

  16. Raghavachari, K. & Rohlfing, C. M. Electronic structure of the negative ions Si2-–Si10-: electron affinities of small silicon clusters. J. Chem. Phys. 94, 3670–3678 (1991)

    Article  CAS  Google Scholar 

  17. Wei, S., Barnett, R. N. & Landman, U. Energetics and structures of neutral and charged Sin (n < 10) and sodium-doped SinNa clusters. Phys. Rev. B 55, 7935–7944 (1997)

    Article  CAS  Google Scholar 

  18. Xu, C., Taylor, T. R., Burton, G. R. & Neumark, D. M. Vibrationally resolved photoelectron spectroscopy of silicon cluster anions Sin- (n = 3–7). J. Chem. Phys. 108, 1395–1406 (1998)

    Article  CAS  Google Scholar 

  19. Shvartsburg, A. A., Liu, B., Jarrold, M. F. & Ho, K.-M. Modeling ionic mobilities by scattering on electronic density isosurfaces: application to silicon cluster anions. J. Chem. Phys. 112, 4517–4526 (2000)

    Article  CAS  Google Scholar 

  20. Xu, C., Taylor, T. R., Burton, G. R. & Neumark, D. M. Photoelectron spectroscopy of SinH (n = 2–4) anions. J. Chem. Phys. 108, 7645–7652 (1998)

    Article  CAS  Google Scholar 

  21. Chesnovsky, O. et al. Ultraviolet photoelectron spectroscopy of semiconductor clusters: silicon and germanium. Chem. Phys. Lett. 138, 119–124 (1987)

    Article  Google Scholar 

  22. Jurnickel, G., Fraunheim, T. & Jackson, K. A. Structure and energetics of SinNm clusters: growth pathways in a heterogenous cluster system. J. Chem. Phys. 112, 1295–1305 (2000)

    Article  Google Scholar 

  23. Boltalina, O. V., Dashkova, E. V. & Sidorov, L. N. Gibbs energies of gas-phase electron transfer reactions involving the larger fullerene anions. Chem. Phys. Lett. 256, 253–260 (1996)

    Article  CAS  Google Scholar 

  24. Hill, T. L. Introduction to Statistical Thermodynamics Ch. 11 (Dover, New York, 1986)

    Google Scholar 

  25. Cha, C. Y., Ganteför, G. & Eberhardt, W. New experimental setup for photoelectron spectroscopy on cluster anions. Rev. Sci. Instrum. 63, 5661–5666 (1992)

    Article  CAS  Google Scholar 

  26. Burkart, S. et al. Experimental verification of the high stability of Al13H: A building block of a new type of cluster material? Chem. Phys. Lett. 301, 546–550 (1999)

    Article  CAS  Google Scholar 

  27. Handschuh, H., Ganteför, G., Kessler, B., Bechthold, P. S. & Eberhardt, W. Stable configurations of carbon clusters: chains, rings, and fullerenes. Phys. Rev. Lett. 74, 1095–1098 (1995)

    Article  CAS  Google Scholar 

  28. Handschuh, H., Ganteför, G. & Eberhardt, W. Vibrational spectroscopy of clusters using a “magnetic bottle” electron spectrometer. Rev. Sci. Instrum. 66, 3838–3843 (1995)

    Article  CAS  Google Scholar 

  29. Chelikowsky, J. R., Troullier, N. & Saad, Y. Finite-difference-pseudopotential method: Electronic structure calculations without a basis. Phys. Rev. Lett. 72, 1240–1243 (1994)

    Article  CAS  Google Scholar 

  30. Woicik, J. W. et al. Hybridization and bond-orbital components in site-specific photoelectron spectra of rutile TiO2 . Phys. Rev. Lett. 89, 74401 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the support provided by the National Science Foundation, the US Department of Energy, the Minnesota Supercomputer Institute, the Deutsche Forschungsgemeinschaft and the Sonderforschungsbereich 513.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James R. Chelikowsky.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kronik, L., Fromherz, R., Ko, E. et al. Highest electron affinity as a predictor of cluster anion structures. Nature Mater 1, 49–53 (2002). https://doi.org/10.1038/nmat704

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat704

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing