Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Organic solar cells based on non-fullerene acceptors


Organic solar cells (OSCs) have been dominated by donor:acceptor blends based on fullerene acceptors for over two decades. This situation has changed recently, with non-fullerene (NF) OSCs developing very quickly. The power conversion efficiencies of NF OSCs have now reached a value of over 13%, which is higher than the best fullerene-based OSCs. NF acceptors show great tunability in absorption spectra and electron energy levels, providing a wide range of new opportunities. The coexistence of low voltage losses and high current generation indicates that new regimes of device physics and photophysics are reached in these systems. This Review highlights these opportunities made possible by NF acceptors, and also discuss the challenges facing the development of NF OSCs for practical applications.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: State-of-the-art NF acceptors.
Figure 2: Unique features of ITIC and its derivatives.
Figure 3: Energy losses in NF OSCs.
Figure 4: The aggregation effects of the donor materials (PBDB-T as an example) in high-efficiency NF OSCs.
Figure 5: New efficiency prediction for OSCs based on NF acceptors.


  1. 1

    Halls, J. J. M. et al. Efficient photodiodes from interpenetrating polymer networks. Nature 376, 498–500 (1995).

    CAS  Article  Google Scholar 

  2. 2

    Yu, G., Gao, J., Hummelen, J. C., Wudl, F. & Heeger, A. J. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270, 1789–1791 (1995).

    CAS  Article  Google Scholar 

  3. 3

    Gélinas, S. et al. Ultrafast long-range charge separation in organic semiconductor photovoltaic diodes. Science 343, 512–516 (2014).

    Article  CAS  Google Scholar 

  4. 4

    Schmidt-Mende, L. et al. Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. Science 293, 1119–1122 (2001).

    CAS  Article  Google Scholar 

  5. 5

    McNeill, C. R. & Greenham, N. C. Conjugated-polymer blends for optoelectronics. Adv. Mater. 21, 3840–3850 (2009).

    CAS  Article  Google Scholar 

  6. 6

    Zhao, W. et al. Molecular optimization enables over 13% efficiency in organic solar cells. J. Am. Chem. Soc. 139, 7148–7151 (2017).

    CAS  Article  Google Scholar 

  7. 7

    Zhao, J. et al. Efficient organic solar cells processed from hydrocarbon solvents. Nat. Energy 1, 15027 (2016).

    CAS  Article  Google Scholar 

  8. 8

    Zhang, S., Ye, L. & Hou, J. Breaking the 10% efficiency barrier in organic photovoltaics: morphology and device optimization of well-known PBDTTT polymers. Adv. Energy Mater. 6, 1502529 (2016).

    Article  CAS  Google Scholar 

  9. 9

    Liu, J. et al. Fast charge separation in a non-fullerene organic solar cell with a small driving force. Nat. Energy 1, 16089 (2016).

    CAS  Article  Google Scholar 

  10. 10

    Cheng, P. et al. Realizing small energy loss of 0.55 eV, high open-circuit voltage >1 V and high efficiency >10% in fullerene-free polymer solar cells via energy driver. Adv. Mater. 29, 1605216 (2017).

    Article  CAS  Google Scholar 

  11. 11

    Chen, S. et al. A wide-bandgap donor polymer for highly efficient non-fullerene organic solar cells with a small voltage loss. J. Am. Chem. Soc. 139, 6298–6301 (2017).

    CAS  Article  Google Scholar 

  12. 12

    Baran, D. et al. Reduced voltage losses yield 10% efficient fullerene free organic solar cells with >1 V open circuit voltages. Energy Environ. Sci. 9, 3783–3793 (2016).

    CAS  Article  Google Scholar 

  13. 13

    Bin, H. et al. 11.4% Efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor. Nat. Commun. 7, 13651 (2016).

    CAS  Article  Google Scholar 

  14. 14

    Li, Y. et al. Non-fullerene acceptor with low energy loss and high external quantum efficiency: towards high performance polymer solar cells. J. Mater. Chem. A 4, 5890–5897 (2016).

    CAS  Article  Google Scholar 

  15. 15

    Vandewal, K. et al. Quantification of quantum efficiency and energy losses in low bandgap polymer:fullerene solar cells with high open-circuit voltage. Adv. Funct. Mater. 22, 3480–3490 (2012).

    CAS  Article  Google Scholar 

  16. 16

    Li, W., Hendriks, K. H., Furlan, A., Wienk, M. M. & Janssen, R. A. J. High quantum efficiencies in polymer solar cells at energy losses below 0.6 eV. J. Am. Chem. Soc. 137, 2231–2234 (2015).

    CAS  Article  Google Scholar 

  17. 17

    Ran, N. A. et al. Impact of interfacial molecular orientation on radiative recombination and charge generation efficiency. Nat. Commun. 8, 79 (2017).

    Article  CAS  Google Scholar 

  18. 18

    Ye, L. et al. Manipulating aggregation and molecular orientation in all-polymer photovoltaic cells. Adv. Mater. 27, 6046–6054 (2015).

    CAS  Article  Google Scholar 

  19. 19

    Jung, J. W. et al. Fluoro-substituted n-type conjugated polymers for additive-free all-polymer bulk heterojunction solar cells with high power conversion efficiency of 6.71%. Adv. Mater. 27, 3310–3317 (2015).

    CAS  Article  Google Scholar 

  20. 20

    Lee, J. et al. A nonfullerene small molecule acceptor with 3D interlocking geometry enabling efficient organic solar cells. Adv. Mater. 28, 69–76 (2016).

    CAS  Article  Google Scholar 

  21. 21

    Kang, H. et al. From fullerene–polymer to all-polymer solar cells: the importance of molecular packing, orientation, and morphology control. Acc. Chem. Res. 49, 2424–2434 (2016).

    CAS  Article  Google Scholar 

  22. 22

    Zhao, W. et al. Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability. Adv. Mater. 28, 4734–4739 (2016).

    CAS  Article  Google Scholar 

  23. 23

    Baran, D. et al. Reducing the efficiency-stability-cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells. Nat. Mater. 16, 363–369 (2017).

    CAS  Article  Google Scholar 

  24. 24

    Cnops, K. et al. 8.4% efficient fullerene-free organic solar cells exploiting long-range exciton energy transfer. Nat. Commun. 5, 3406 (2014).

    Article  CAS  Google Scholar 

  25. 25

    Li, T. et al. Small molecule near-infrared boron dipyrromethene donors for organic tandem solar cells. J. Am. Chem. Soc. 139, 13636–13639 (2017).

    CAS  Article  Google Scholar 

  26. 26

    Tang, C. W. Two-layer organic photovoltaic cell. Appl. Phys. Lett. 48, 183–185 (1986).

    CAS  Article  Google Scholar 

  27. 27

    Anthony, J. E., Facchetti, A., Heeney, M., Marder, S. R. & Zhan, X. n-type organic semiconductors in organic electronics. Adv. Mater. 22, 3876–3892 (2010).

    CAS  Article  Google Scholar 

  28. 28

    Zhang, X. et al. A potential perylene diimide dimer-based acceptor material for highly efficient solution-processed non-fullerene organic solar cells with 4.03% efficiency. Adv. Mater. 25, 5791–5797 (2013).

    CAS  Article  Google Scholar 

  29. 29

    Lin, Y. et al. A twisted dimeric perylene diimide electron acceptor for efficient organic solar cells. Adv. Energy Mater. 4, 1400420 (2014).

    Article  CAS  Google Scholar 

  30. 30

    Nielsen, C. B., Holliday, S., Chen, H.-Y., Cryer, S. J. & McCulloch, I. Non-fullerene electron acceptors for use in organic solar cells. Acc. Chem. Res. 48, 2803–2812 (2015).

    CAS  Article  Google Scholar 

  31. 31

    Guo, Y. et al. Improved performance of all-polymer solar cells enabled by naphthodiperylenetetraimide-based polymer acceptor. Adv. Mater. 29, 1700309 (2017).

    Article  CAS  Google Scholar 

  32. 32

    Mori, D., Benten, H., Okada, I., Ohkita, H. & Ito, S. Highly efficient charge-carrier generation and collection in polymer/polymer blend solar cells with a power conversion efficiency of 5.7%. Energy Environ. Sci. 7, 2939–2943 (2014).

    CAS  Article  Google Scholar 

  33. 33

    Li, S. et al. Green-solvent-processed all-polymer solar cells containing a perylene diimide-based acceptor with an efficiency over 6.5%. Adv. Energy Mater. 6, 1501991 (2016).

    Article  CAS  Google Scholar 

  34. 34

    Gao, L. et al. All-polymer solar cells based on absorption-complementary polymer donor and acceptor with high power conversion efficiency of 8.27%. Adv. Mater. 28, 1884–1890 (2016).

    CAS  Article  Google Scholar 

  35. 35

    Fan, B. et al. Optimisation of processing solvent and molecular weight for the production of green-solvent-processed all-polymer solar cells with a power conversion efficiency over 9%. Energy Environ. Sci. 10, 1243–1251 (2017).

    CAS  Article  Google Scholar 

  36. 36

    Granström, M. et al. Laminated fabrication of polymeric photovoltaic diodes. Nature 395, 257–260 (1998).

    Article  Google Scholar 

  37. 37

    Lin, Y. et al. An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv. Mater. 27, 1170–1174 (2015).

    CAS  Article  Google Scholar 

  38. 38

    Li, S. et al. Energy-level modulation of small-molecule electron acceptors to achieve over 12% efficiency in polymer solar cells. Adv. Mater. 28, 9423–9429 (2016).

    CAS  Article  Google Scholar 

  39. 39

    Yao, H. et al. Achieving highly efficient nonfullerene organic solar cells with improved intermolecular interaction and open-circuit voltage. Adv. Mater. 29, 1700254 (2017).

    Article  CAS  Google Scholar 

  40. 40

    Cha, H. et al. An efficient, 'burn in' free organic solar cell employing a nonfullerene electron acceptor. Adv. Mater. 29, 1701156 (2017).

    Article  CAS  Google Scholar 

  41. 41

    Faist, M. A. et al. Competition between the charge transfer state and the singlet states of donor or acceptor limiting the efficiency in polymer:fullerene solar cells. J. Am. Chem. Soc. 134, 685–692 (2012).

    CAS  Article  Google Scholar 

  42. 42

    Veldman, D., Meskers, S. C. J. & Janssen, R. A. J. The energy of charge-transfer states in electron donor–acceptor blends: insight into the energy losses in organic solar cells. Adv. Funct. Mater. 19, 1939–1948 (2009).

    CAS  Article  Google Scholar 

  43. 43

    Clarke, T. M. & Durrant, J. R. Charge photogeneration in organic solar cells. Chem. Rev. 110, 6736–6767 (2010).

    CAS  Article  Google Scholar 

  44. 44

    Kawashima, K., Tamai, Y., Ohkita, H., Osaka, I. & Takimiya, K. High-efficiency polymer solar cells with small photon energy loss. Nat. Commun. 6, 10085 (2015).

    CAS  Article  Google Scholar 

  45. 45

    Li, S. et al. A spirobifluorene and diketopyrrolopyrrole moieties based non-fullerene acceptor for efficient and thermally stable polymer solar cells with high open-circuit voltage. Energy Environ. Sci. 9, 604–610 (2016).

    CAS  Article  Google Scholar 

  46. 46

    Nikolis, V. C. et al. Reducing voltage losses in cascade organic solar cells while maintaining high external quantum efficiencies. Adv. Energy Mater. 7, 1700855 (2017).

    Article  CAS  Google Scholar 

  47. 47

    Rau, U., Blank, B., Müller, T. C. M. & Kirchartz, T. Efficiency potential of photovoltaic materials and devices unveiled by detailed-balance analysis. Phys. Rev. Appl. 7, 044016 (2017).

    Article  Google Scholar 

  48. 48

    Goris, L. et al. Absorption phenomena in organic thin films for solar cell applications investigated by photothermal deflection spectroscopy. J. Mater. Sci. 40, 1413–1418 (2005).

    CAS  Article  Google Scholar 

  49. 49

    Vandewal, K., Tvingstedt, K., Gadisa, A., Inganäs, O. & Manca, J. V. On the origin of the open-circuit voltage of polymer–fullerene solar cells. Nat. Mater. 8, 904–909 (2009).

    CAS  Article  Google Scholar 

  50. 50

    Tvingstedt, K. et al. Electroluminescence from charge transfer states in polymer solar cells. J. Am. Chem. Soc. 131, 11819–11824 (2009).

    CAS  Article  Google Scholar 

  51. 51

    Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

    CAS  Article  Google Scholar 

  52. 52

    Yao, J. et al. Quantifying losses in open-circuit voltage in solution-processable solar cells. Phys. Rev. Appl. 4, 014020 (2015).

    Article  CAS  Google Scholar 

  53. 53

    Ross, R. T. Some Thermodynamics of photochemical systems. J. Chem. Phys. 46, 4590–4593 (1967).

    CAS  Article  Google Scholar 

  54. 54

    Miller, O. D., Yablonovitch, E. & Kurtz, S. R. Strong internal and external luminescence as solar cells approach the Shockley–Queisser limit. IEEE J. Photovolt. 2, 303–311 (2012).

    Article  Google Scholar 

  55. 55

    Benduhn, J. et al. Intrinsic non-radiative voltage losses in fullerene-based organic solar cells. Nat. Energy 2, 17053 (2017).

    CAS  Article  Google Scholar 

  56. 56

    Menke, S. M. et al. Limits for recombination in a low energy loss organic heterojunction. ACS Nano 10, 10736–10744 (2016).

    CAS  Article  Google Scholar 

  57. 57

    Rao, A. et al. The role of spin in the kinetic control of recombination in organic photovoltaics. Nature 500, 435–439 (2013).

    CAS  Article  Google Scholar 

  58. 58

    Zheng, Z. et al. Efficient charge transfer and fine-tuned energy level alignment in a thf-processed fullerene-free organic solar cell with 11.3% efficiency. Adv. Mater. 29, 1604241 (2017).

    Article  CAS  Google Scholar 

  59. 59

    Tamai, Y. et al. Ultrafast long-range charge separation in nonfullerene organic solar cells. ACS Nano (2017).

    CAS  Article  Google Scholar 

  60. 60

    Vandewal, K. et al. Efficient charge generation by relaxed charge-transfer states at organic interfaces. Nat. Mater. 13, 63–68 (2014).

    CAS  Article  Google Scholar 

  61. 61

    Gao, F., Tress, W., Wang, J. & Inganäs, O. Temperature dependence of charge carrier generation in organic photovoltaics. Phys. Rev. Lett. 114, 128701 (2015).

    Article  CAS  Google Scholar 

  62. 62

    Deibel, C., Strobel, T. & Dyakonov, V. Role of the charge transfer state in organic donor–acceptor solar cells. Adv. Mater. 22, 4097–4111 (2010).

    CAS  Article  Google Scholar 

  63. 63

    Brédas, J.-L., Norton, J. E., Cornil, J. & Coropceanu, V. Molecular understanding of organic solar cells: the challenges. Acc. Chem. Res. 42, 1691–1699 (2009).

    Article  CAS  Google Scholar 

  64. 64

    Brédas, J.-L., Sargent, E. H. & Scholes, G. D. Photovoltaic concepts inspired by coherence effects in photosynthetic systems. Nat. Mater. 16, 35–44 (2017).

    Article  CAS  Google Scholar 

  65. 65

    Falke, S. M. et al. Coherent ultrafast charge transfer in an organic photovoltaic blend. Science 344, 1001–1005 (2014).

    CAS  Article  Google Scholar 

  66. 66

    Grancini, G. et al. Hot exciton dissociation in polymer solar cells. Nat. Mater. 12, 29–33 (2013).

    CAS  Article  Google Scholar 

  67. 67

    Jailaubekov, A. E. et al. Hot charge-transfer excitons set the time limit for charge separation at donor/acceptor interfaces in organic photovoltaics. Nat. Mater. 12, 66–73 (2013).

    CAS  Article  Google Scholar 

  68. 68

    Savoie, B. M. et al. Unequal partnership: asymmetric roles of polymeric donor and fullerene acceptor in generating free charge. J. Am. Chem. Soc. 136, 2876–2884 (2014).

    CAS  Article  Google Scholar 

  69. 69

    Song, Y., Clafton, S. N., Pensack, R. D., Kee, T. W. & Scholes, G. D. Vibrational coherence probes the mechanism of ultrafast electron transfer in polymer–fullerene blends. Nat. Commun. 5, 4933 (2014).

    Article  CAS  Google Scholar 

  70. 70

    Bakulin, A. A., Silva, C. & Vella, E. Ultrafast spectroscopy with photocurrent detection: watching excitonic optoelectronic systems at work. J. Phys. Chem. Lett. 7, 250–258 (2016).

    CAS  Article  Google Scholar 

  71. 71

    Bakulin, A. A. et al. The role of driving energy and delocalized states for charge separation in organic semiconductors. Science 335, 1340–1344 (2012).

    CAS  Article  Google Scholar 

  72. 72

    Liu, D. et al. Molecular design of a wide-band-gap conjugated polymer for efficient fullerene-free polymer solar cells. Energy Environ. Sci. 10, 546–551 (2017).

    CAS  Article  Google Scholar 

  73. 73

    Zhang, S. et al. A fluorinated polythiophene derivative with stabilized backbone conformation for highly efficient fullerene and non-fullerene polymer solar cells. Macromolecules 49, 2993–3000 (2016).

    CAS  Article  Google Scholar 

  74. 74

    Yao, H. et al. A wide bandgap polymer with strong π–π interaction for efficient fullerene-free polymer solar cells. Adv. Energy Mater. 6, 1600742 (2016).

    Article  CAS  Google Scholar 

  75. 75

    Qian, D. et al. Design, application, and morphology study of a new photovoltaic polymer with strong aggregation in solution state. Macromolecules 45, 9611–9617 (2012).

    CAS  Article  Google Scholar 

  76. 76

    Salleo, A. Charge transport in polymeric transistors. Mater. Today 10, 38–45 (March, 2007).

    CAS  Article  Google Scholar 

  77. 77

    Hutchison, G. R., Ratner, M. A. & Marks, T. J. Intermolecular charge transfer between heterocyclic oligomers. effects of heteroatom and molecular packing on hopping transport in organic semiconductors. J. Am. Chem. Soc. 127, 16866–16881 (2005).

    CAS  Article  Google Scholar 

  78. 78

    Chen, Z. et al. Low band-gap conjugated polymers with strong interchain aggregation and very high hole mobility towards highly efficient thick-film polymer solar cells. Adv. Mater. 26, 2586–2591 (2014).

    CAS  Article  Google Scholar 

  79. 79

    Zhou, H. et al. Development of fluorinated benzothiadiazole as a structural unit for a polymer solar cell of 7% efficiency. Angew. Chem. Int. Ed. 50, 2995–2998 (2011).

    CAS  Article  Google Scholar 

  80. 80

    Kim, J. Y. et al. Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317, 222–225 (2007).

    CAS  Article  Google Scholar 

  81. 81

    You, J. et al. A polymer tandem solar cell with 10.6% power conversion efficiency. Nat. Commun. 4, 1446 (2013).

    Article  CAS  Google Scholar 

  82. 82

    Gilot, J., Wienk, M. M. & Janssen, R. A. J. Measuring the external quantum efficiency of two-terminal polymer tandem solar cells. Adv. Funct. Mater. 20, 3904–3911 (2010).

    CAS  Article  Google Scholar 

  83. 83

    Liu, W. et al. Nonfullerene tandem organic solar cells with high open-circuit voltage of 1.97 V. Adv. Mater. 28, 9729–9734 (2016).

    CAS  Article  Google Scholar 

  84. 84

    Cui, Y. et al. Fine-tuned photoactive and interconnection layers for achieving over 13% efficiency in a fullerene-free tandem organic solar cell. J. Am. Chem. Soc. 139, 7302–7309 (2017).

    CAS  Article  Google Scholar 

  85. 85

    Cui, Y., Yao, H., Yang, C., Zhang, S. & Hou, J. Organic solar cells with an efficiency approaching 15%. Acta Polym. Sin. (2017).

  86. 86

    Zhang, G. et al. High-performance ternary organic solar cell enabled by a thick active layer containing a liquid crystalline small molecule donor. J. Am. Chem. Soc. 139, 2387–2395 (2017).

    CAS  Article  Google Scholar 

  87. 87

    Lu, L., Xu, T., Chen, W., Landry, E. S. & Yu, L. Ternary blend polymer solar cells with enhanced power conversion efficiency. Nat. Photon. 8, 716–722 (2014).

    CAS  Article  Google Scholar 

  88. 88

    Yao, H. et al. Design, synthesis, and photovoltaic characterization of a small molecular acceptor with an ultra-narrow band gap. Angew. Chem. Int. Ed. 56, 3045–3049 (2017).

    CAS  Article  Google Scholar 

  89. 89

    Lu, H. et al. Ternary-blend polymer solar cells combining fullerene and nonfullerene acceptors to synergistically boost the photovoltaic performance. Adv. Mater. 28, 9559–9566 (2016).

    CAS  Article  Google Scholar 

  90. 90

    Zhao, W., Li, S., Zhang, S., Liu, X. & Hou, J. Ternary polymer solar cells based on two acceptors and one donor for achieving 12.2% efficiency. Adv. Mater. 29, 1604059 (2017).

    Article  CAS  Google Scholar 

  91. 91

    Yu, R. et al. Two well-miscible acceptors work as one for efficient fullerene-free organic solar cells. Adv. Mater. 29, 1700437 (2017).

    Article  CAS  Google Scholar 

  92. 92

    Khlyabich, P. P., Burkhart, B. & Thompson, B. C. Compositional dependence of the open-circuit voltage in ternary blend bulk heterojunction solar cells based on two donor polymers. J. Am. Chem. Soc. 134, 9074–9077 (2012).

    CAS  Article  Google Scholar 

  93. 93

    Wang, C. et al. Ternary organic solar cells with enhanced open circuit voltage. Nano Energy 37, 24–31 (2017).

    CAS  Article  Google Scholar 

  94. 94

    Chen, C.-C. et al. High-performance semi-transparent polymer solar cells possessing tandem structures. Energy Environ. Sci. 6, 2714–2720 (2013).

    CAS  Article  Google Scholar 

  95. 95

    Xu, G. et al. High-performance colorful semitransparent polymer solar cells with ultrathin hybrid-metal electrodes and fine-tuned dielectric mirrors. Adv. Funct. Mater. 27, 1605908 (2017).

    Article  CAS  Google Scholar 

  96. 96

    Zhang, M., Guo, X., Ma, W., Ade, H. & Hou, J. A large-bandgap conjugated polymer for versatile photovoltaic applications with high performance. Adv. Mater. 27, 4655–4660 (2015).

    CAS  Article  Google Scholar 

  97. 97

    Wang, W. et al. Fused hexacyclic nonfullerene acceptor with strong near-infrared absorption for semitransparent organic solar cells with 9.77% efficiency. Adv. Mater. 29, 1701308 (2017).

    Article  CAS  Google Scholar 

  98. 98

    Green, M. A. Solar cell fill factors: general graph and empirical expressions. Solid State Electron. 24, 788 (1981).

    CAS  Article  Google Scholar 

  99. 99

    Green, M. A., Emery, K., Hishikawa, Y., Warta, W. & Dunlop, E. D. Solar cell efficiency tables (version 47). Prog. Photovolt. Res. Appl. 24, 3–11 (2016).

    Article  Google Scholar 

  100. 100

    Jao, M.-H., Liao, H.-C. & Su, W.-F. Achieving a high fill factor for organic solar cells. J. Mater. Chem. A 4, 5784–5801 (2016).

    CAS  Article  Google Scholar 

  101. 101

    Li, S. et al. Design of a new small-molecule electron acceptor enables efficient polymer solar cells with high fill factor. Adv. Mater. 29, 1704051 (2017).

    Article  CAS  Google Scholar 

Download references


We thank Thomas Kirchartz for insightful discussions. The work was supported by the National Natural Science Foundation of China (grant nos 91633301, 91333204, 51673201, 21325419 and 51711530159), the Chinese Academy of Sciences (grant no. XDB12030200), the Swedish Research Council VR (grant nos 2017-00744 and 2016-06146), the Swedish Energy Agency Energimyndigheten (2016-010174), the Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linköping University (faculty grant no. SFO-Mat-LiU #2009-00971), the Engineering and Physical Sciences Research Council in the UK, and the Knut and Alice Wallenberg foundation (KAW) through a Wallenberg Scholar grant to O.I.

Author information



Corresponding authors

Correspondence to Jianhui Hou or Feng Gao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hou, J., Inganäs, O., Friend, R. et al. Organic solar cells based on non-fullerene acceptors. Nat. Mater. 17, 119–128 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing