Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A sol–gel monolithic metal–organic framework with enhanced methane uptake

Abstract

A critical bottleneck for the use of natural gas as a transportation fuel has been the development of materials capable of storing it in a sufficiently compact form at ambient temperature. Here we report the synthesis of a porous monolithic metal–organic framework (MOF), which after successful packing and densification reaches 259 cm3 (STP) cm−3 capacity. This is the highest value reported to date for conformed shape porous solids, and represents a greater than 50% improvement over any previously reported experimental value. Nanoindentation tests on the monolithic MOF showed robust mechanical properties, with hardness at least 130% greater than that previously measured in its conventional MOF counterparts. Our findings represent a substantial step in the application of mechanically robust conformed and densified MOFs for high volumetric energy storage and other industrial applications.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Schematic representation of monolithic and powder MOF synthesis.
Figure 2: Transmission electron microscopy images of monolithic and powder MOF samples.
Figure 3: Gas adsorption in HKUST-1.
Figure 4: Nanoindentation on monoHKUST-1.

References

  1. Makal, T. A., Li, J.-R., Lu, W. & Zhou, H.-C. Methane storage in advanced porous materials. Chem. Soc. Rev. 41, 7761–7779 (2012).

    CAS  Google Scholar 

  2. Mason, J. A. et al. Methane storage in flexible metal–organic frameworks with intrinsic thermal management. Nature 527, 357–361 (2015).

    CAS  Google Scholar 

  3. Schoedel, A., Ji, Z. & Yaghi, O. M. The role of metal–organic frameworks in a carbon-neutral energy cycle. Nat. Energy 1, 16034 (2016).

    CAS  Google Scholar 

  4. He, Y., Zhou, W., Qian, G. & Chen, B. Methane storage in metal–organic frameworks. Chem. Soc. Rev. 43, 5657–5678 (2014).

    CAS  Google Scholar 

  5. Peng, Y. et al. Methane storage in metal–organic frameworks: current records, surprise findings, and challenges. J. Am. Chem. Soc. 135, 11887–11894 (2013).

    CAS  Google Scholar 

  6. Alezi, D. et al. MOF crystal chemistry paving the way to gas storage needs: aluminum-based soc-MOF for CH4, O2, and CO2 storage. J. Am. Chem. Soc. 137, 13308–13318 (2015).

    CAS  Google Scholar 

  7. Moghadam, P. Z. et al. Development of a Cambridge Structural Database subset: a collection of metal–organic frameworks for past, present, and future. Chem. Mater. 29, 2618–2625 (2017).

    CAS  Google Scholar 

  8. Wilmer, C. E. et al. Large-scale screening of hypothetical metal–organic frameworks. Nat. Chem. 4, 83–89 (2012).

    CAS  Google Scholar 

  9. Chung, Y. G. et al. Computation-ready, experimental metal–organic frameworks: a tool to enable high-throughput screening of nanoporous crystals. Chem. Mater. 26, 6185–6192 (2014).

    CAS  Google Scholar 

  10. Mason, J. A., Veenstra, M. & Long, J. R. Evaluating metal–organic frameworks for natural gas storage. Chem. Sci. 5, 32–51 (2014).

    CAS  Google Scholar 

  11. Casco, M. E. et al. High-pressure methane storage in porous materials: are carbon materials in the pole position? Chem. Mater. 27, 959–964 (2015).

    CAS  Google Scholar 

  12. Tian, T., Velazquez-Garcia, J., Bennett, T. D. & Fairen-Jimenez, D. Mechanically and chemically robust ZIF-8 monoliths with high volumetric adsorption capacity. J. Mater. Chem. A 3, 2999–3005 (2015).

    CAS  Google Scholar 

  13. Bueken, B. et al. Gel-based morphological design of zirconium metal-organic frameworks. Chem. Sci. 8, 3939–3948 (2017).

    CAS  Google Scholar 

  14. Tan, G., John, V. T. & McPherson, G. L. Nucleation and growth characteristics of a binary low-mass organogel. Langmuir 22, 7416–7420 (2006).

    CAS  Google Scholar 

  15. Fairén-Jiménez, D., Carrasco-Marín, F. & Moreno-Castilla, C. Inter-and intra-primary-particle structure of monolithic carbon aerogels obtained with varying solvents. Langmuir 24, 2820–2825 (2008).

    Google Scholar 

  16. Fairen-Jimenez, D. et al. Surface area and microporosity of carbon aerogels from gas adsorption and small-and wide-angle X-ray scattering measurements. J. Phys. Chem. B 110, 8681–8688 (2006).

    CAS  Google Scholar 

  17. Pekala, R. Organic aerogels from the polycondensation of resorcinol with formaldehyde. J. Mater. Sci. 24, 3221–3227 (1989).

    CAS  Google Scholar 

  18. Dorcheh, A. S. & Abbasi, M. Silica aerogel; synthesis, properties and characterization. J. Mater. Process. Technol. 199, 10–26 (2008).

    Google Scholar 

  19. Horcajada, P. et al. Colloidal route for preparing optical thin films of nanoporous metal–organic frameworks. Adv. Mater. 21, 1931–1935 (2009).

    CAS  Google Scholar 

  20. Li, L. et al. A synthetic route to ultralight hierarchically micro/mesoporous Al (III)-carboxylate metal-organic aerogels. Nat. Commun. 4, 1774 (2013).

    CAS  Google Scholar 

  21. Kim, K.-J. et al. High-rate synthesis of Cu–BTC metal–organic frameworks. Chem. Commun. 49, 11518–11520 (2013).

    CAS  Google Scholar 

  22. Getzschmann, J. et al. Methane storage mechanism in the metal-organic framework Cu3(btc)2: An in situ neutron diffraction study. Microporous Mesoporous Mater. 136, 50–58 (2010).

    CAS  Google Scholar 

  23. Nune, S. K. et al. Synthesis and properties of nano zeolitic imidazolate frameworks. Chem. Commun. 46, 4878–4880 (2010).

    CAS  Google Scholar 

  24. Cravillon, J. et al. Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework. Chem. Mater. 21, 1410–1412 (2009).

    CAS  Google Scholar 

  25. Pan, Y., Liu, Y., Zeng, G., Zhao, L. & Lai, Z. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chem. Commun. 47, 2071–2073 (2011).

    CAS  Google Scholar 

  26. Sánchez-Sánchez, M. et al. Synthesis of metal–organic frameworks in water at room temperature: salts as linker sources. Green Chem. 17, 1500–1509 (2015).

    Google Scholar 

  27. Lemmon, E. W., McLinden, M. O. & Friend, D. G. Thermophysical Properties of Fluid Systems. in NIST Chemistry WebBook, NIST Standard Reference Database Number 69 (eds Linstrom, P. J. & Mallard, W. G.) (National Institute of Standards and Technology, 2005).

    Google Scholar 

  28. Fairen-Jimenez, D. et al. Understanding excess uptake maxima for hydrogen adsorption isotherms in frameworks with rht topology. Chem. Commun. 48, 10496–10498 (2012).

    CAS  Google Scholar 

  29. Gómez-Gualdrón, D. A., Wilmer, C. E., Farha, O. K., Hupp, J. T. & Snurr, R. Q. Exploring the limits of methane storage and delivery in nanoporous materials. J. Phys. Chem. C 118, 6941–6951 (2014).

    Google Scholar 

  30. Simon, C. M. et al. The materials genome in action: identifying the performance limits for methane storage. Energy Environ. Sci. 8, 1190–1199 (2015).

    CAS  Google Scholar 

  31. Gándara, F., Furukawa, H., Lee, S. & Yaghi, O. M. High methane storage capacity in aluminum metal–organic frameworks. J. Am. Chem. Soc. 136, 5271–5274 (2014).

    Google Scholar 

  32. Jiang, J., Furukawa, H., Zhang, Y.-B. & Yaghi, O. M. High methane storage working capacity in metal–organic frameworks with acrylate links. J. Am. Chem. Soc. 138, 10244–10251 (2016).

    CAS  Google Scholar 

  33. Methane Opportunities for Vehicular Energy (MOVE). DE-FOA-0000672, February 22, 2012. https://arpa-e-foa.energy.gov

  34. Wang, L. W. et al. Study of thermal conductivity, permeability, and adsorption performance of consolidated composite activated carbon adsorbent for refrigeration. Renew. Energy 36, 2062–2066 (2011).

    CAS  Google Scholar 

  35. Huang, B. L. et al. Thermal conductivity of a metal-organic framework (MOF-5): Part II. Measurement. Int. J. Heat Mass Transfer 50, 405–411 (2007).

    CAS  Google Scholar 

  36. Jeremias, F., Henninger, S. K. & Janiak, C. High performance metal-organic-framework coatings obtained via thermal gradient synthesis. Chem. Commun. 48, 9708–9710 (2012).

    CAS  Google Scholar 

  37. Ahn, H. S. et al. Enhanced heat transfer is dependent on thickness of graphene films: the heat dissipation during boiling. Sci. Rep. 4, 6276 (2014).

    CAS  Google Scholar 

  38. Zhou, M. et al. Highly conductive porous graphene/ceramic composites for heat transfer and thermal energy storage. Adv. Funct. Mater. 23, 2263–2269 (2013).

    CAS  Google Scholar 

  39. Danks, A. E., Hall, S. R. & Schnepp, Z. The evolution of ‘sol–gel’ chemistry as a technique for materials synthesis. Mater. Horiz. 3, 91–112 (2016).

    CAS  Google Scholar 

  40. Ryder, M. R., Civalleri, B., Cinque, G. & Tan, J.-C. Discovering connections between terahertz vibrations and elasticity underpinning the collective dynamics of the HKUST-1 metal–organic framework. CrystEngComm 18, 4303–4312 (2016).

    CAS  Google Scholar 

  41. Bundschuh, S. et al. Mechanical properties of metal-organic frameworks: an indentation study on epitaxial thin films. Appl. Phys. Lett. 101, 101910 (2012).

    Google Scholar 

  42. Tabor, D. Indentation hardness: fifty years on a personal view. Phil. Mag. A 74, 1207–1212 (1996).

    CAS  Google Scholar 

  43. Wee, L. H., Lohe, M. R., Janssens, N., Kaskel, S. & Martens, J. A. Fine tuning of the metal–organic framework Cu3(BTC)2 HKUST-1 crystal size in the 100 nm to 5 micron range. J. Mater. Chem. 22, 13742–13746 (2012).

    CAS  Google Scholar 

  44. Tan, J. C., Bennett, T. D. & Cheetham, A. K. Chemical structure, network topology, and porosity effects on the mechanical properties of zeolitic imidazolate frameworks. Proc. Natl Acad. Sci. USA 107, 9938–9943 (2010).

    CAS  Google Scholar 

  45. Tan, J. C., Merrill, C. A., Orton, J. B. & Cheetham, A. K. Anisotropic mechanical properties of polymorphic hybrid inorganic–organic framework materials with different dimensionalities. Acta Mater. 57, 3481–3496 (2009).

    CAS  Google Scholar 

Download references

Acknowledgements

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (NanoMOFdeli), ERC-2016-COG 726380, and the EPSRC IAA Partnership Development Award (RG/75759). D.F.-J. thanks the Royal Society for funding through a University Research Fellowship. J.C.T. would like to acknowledge the EPSRC (EP/N014960/1) for research funding. G.D. and P.A.M. acknowledge financial support from the EU under grant numbers 312483 ESTEEM2 and 291522 3DIMAGE. J.S.A. acknowledges financial support from MINECO (MAT2016-80285-p), H2020 (MSCA-RISE-2016/Nanomed Project) and GV (PROMETEOII/2014/004).

Author information

Authors and Affiliations

Authors

Contributions

T.T. and D.F.-J. designed the research. T.T. performed the materials synthesis and characterization, and D.V. carried out the N2 gas adsorption, both under the supervision of D.F.-J. M.E.C. and J.S.-A. participated in the characterization of the materials, including high-pressure adsorption tests and TGA–MS; Z.Z. performed the nanoindentation experiments under the supervision of J.-C.T.; G.D. carried out the TEM analysis under the supervision of P.A.M.; T.T., P.Z.M. and D.J.-F. wrote the first draft of the manuscript with input from the rest of the authors. All the authors contributed to the final version.

Corresponding author

Correspondence to David Fairen-Jimenez.

Ethics declarations

Competing interests

T.T. and D.F.-J. have financial interest in the start-up company Immaterial Labs, which is seeking to commercialize metal–organic frameworks.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1656 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tian, T., Zeng, Z., Vulpe, D. et al. A sol–gel monolithic metal–organic framework with enhanced methane uptake. Nat. Mater. 17, 174–179 (2018). https://doi.org/10.1038/nmat5050

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat5050

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing