Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Designer biomaterials for mechanobiology

Biomaterials engineered with specific bioactive ligands, tunable mechanical properties and complex architecture have emerged as powerful tools to probe cell sensing and response to physical properties of their material surroundings, and ultimately provide designer approaches to control cell function.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Designer approaches to engineer biomaterials for mechanobiology.

References

  1. Wozniak, M. A. & Chen, C. S. Nat. Rev. Mol. Cell Biol. 10, 34–43 (2009).

    Article  CAS  Google Scholar 

  2. Humphrey, J. D., Dufresne, E. R. & Schwartz, M. A. Nat. Rev. Mol. Cell Biol. 15, 802–812 (2014).

    Article  CAS  Google Scholar 

  3. Bonnans, C., Chou, J. & Werb, Z. Nat. Rev. Mol. Cell Biol. 15, 786–801 (2014).

    Article  CAS  Google Scholar 

  4. Kutys, M. L. & Chen, C. S. Curr. Opin. Cell Biol. 42, 73–79 (2016).

    Article  CAS  Google Scholar 

  5. Chen, C. S. J. Cell Sci. 121, 3285–3292 (2008).

    Article  CAS  Google Scholar 

  6. Mammoto, A. et al. Nature 457, 1103–1108 (2009).

    Article  CAS  Google Scholar 

  7. Eyckmans, J., Boudou, T., Yu, X. & Chen, C. S. Dev. Cell 21, 35–47 (2011).

    Article  CAS  Google Scholar 

  8. Ingber, D. Ann. Med. 35, 564–577 (2003).

    Article  Google Scholar 

  9. Iskratsch, T., Wolfenson, H. & Sheetz, M. P. Nat. Rev. Mol. Cell Biol. 15, 825–833 (2014).

    Article  CAS  Google Scholar 

  10. Levental, K. R. et al. Cell 139, 891–906 (2009).

    Article  CAS  Google Scholar 

  11. Liu, J. et al. Nat. Mater. 11, 734–741 (2012).

    Article  CAS  Google Scholar 

  12. Harris, A. K., Wild, P. & Stopak, D. Science 208, 177–179 (1980).

    Article  CAS  Google Scholar 

  13. Storm, C., Pastore, J. J., MacKintosh, F. C., Lubensky, T. C. & Janmey, P. A. Nature 435, 191–194 (2005).

    Article  CAS  Google Scholar 

  14. Discher, D. E., Janmey, P. & Wang, Y. L. Science 310, 1139–1143 (2005).

    Article  CAS  Google Scholar 

  15. Yeung, T. et al. Cell Motil. Cytoskeleton 60, 24–34 (2005).

    Article  Google Scholar 

  16. Solon, J., Levental, I., Sengupta, K., Georges, P. C. & Janmey, P. A. Biophys. J. 93, 4453–4461 (2007).

    Article  CAS  Google Scholar 

  17. Parsons, J. T., Horwitz, A. R. & Schwartz, M. A. Nat. Rev. Mol. Cell Biol. 11, 633–643 (2010).

    Article  CAS  Google Scholar 

  18. Choi, C. K. et al. Nat. Cell Biol. 10, 1039–1050 (2008).

    Article  CAS  Google Scholar 

  19. Trichet, L. et al. Proc. Natl Acad. Sci. USA 109, 6933–6938 (2012).

    Article  CAS  Google Scholar 

  20. Lo, C.-M., Wang, H. B., Dembo, M. & Wang, Y. Biophys. J. 79, 144–152 (2000).

    Article  CAS  Google Scholar 

  21. Hartman, C. D., Isenberg, B. C., Chua, S. G. & Wong, J. Y. Proc. Natl Acad. Sci. USA 113, 11190–11195 (2016).

    Article  CAS  Google Scholar 

  22. Vincent, L. G., Choi, Y. S., Alonso-Latorre, B., del Álamo, J. C. & Engler, A. J. Biotechnol. J. 8, 472–484 (2013).

    Article  CAS  Google Scholar 

  23. Isermann, P. & Lammerding, J. Curr. Biol. 23, R1113–R1121 (2013).

    Article  CAS  Google Scholar 

  24. Wang, N., Tytell, J. D. & Ingber, D. E. Nat. Rev. Mol. Cell Biol. 10, 75–82 (2009).

    Article  CAS  Google Scholar 

  25. Swift, J. et al. Science. 341, 1240104 (2013).

    Article  Google Scholar 

  26. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Cell 126, 677–689 (2006).

    Article  CAS  Google Scholar 

  27. Leight, J. L., Drain, A. P. & Weaver, V. M. Annu. Rev. Cancer Biol. 1, 313–334 (2017).

    Article  Google Scholar 

  28. Polacheck, W. J. & Chen, C. S. Nat. Methods 13, 415–423 (2016).

    Article  CAS  Google Scholar 

  29. Baker, B. M. & Chen, C. S. J. Cell Sci. 125, 3015–3024 (2012).

    Article  CAS  Google Scholar 

  30. Webber, M. J., Appel, E. A., Meijer, E. W. & Langer, R. Nat. Mater. 15, 13–26 (2016).

    Article  CAS  Google Scholar 

  31. Liang, Y., Li, L., Scott, R. A. & Kiick, K. L. Macromolecules 50, 483–502 (2017).

    Article  CAS  Google Scholar 

  32. Lutolf, M. P. et al. Proc. Natl Acad. Sci. USA 100, 5413–5418 (2003).

    Article  CAS  Google Scholar 

  33. Rosales, A. M. & Anseth, K. S. Nat. Rev. Mater. 1, 15012 (2016).

    Article  CAS  Google Scholar 

  34. Pampaloni, F., Reynaud, E. G. & Stelzer, E. H. K. Nat. Rev. Mol. Cell Biol. 8, 839–845 (2007).

    Article  CAS  Google Scholar 

  35. Khetan, S. et al. Nat. Mater. 12, 458–465 (2013).

    Article  CAS  Google Scholar 

  36. Huebsch, N. et al. Nat. Mater. 9, 518–526 (2010).

    Article  CAS  Google Scholar 

  37. Trappmann, B. et al. Nat. Commun. 8, 371 (2017).

    Article  Google Scholar 

  38. Baker, B. M. et al. Nat. Mater. 14, 1262–1268 (2015).

    Article  CAS  Google Scholar 

  39. Cao, X. et al. Proc. Natl Acad. Sci. USA 114, E4549–E4555 (2017).

    Article  CAS  Google Scholar 

  40. Chaudhuri, O. et al. Nat. Mater. 15, 326–334 (2016).

    Article  CAS  Google Scholar 

  41. Kloxin, A. M., Kasko, A. M., Salinas, C. N. & Anseth, K. S. Science 324, 59–63 (2009).

    Article  CAS  Google Scholar 

  42. DeForest, C. A. & Anseth, K. S. Nat. Chem. 3, 925–931 (2011).

    Article  CAS  Google Scholar 

  43. Yang, C., Tibbitt, M. W., Basta, L. & Anseth, K. S. Nat. Mater. 13, 645–652 (2014).

    Article  CAS  Google Scholar 

  44. Li, C. X. et al. Nat. Mater. 16, 379–389 (2017).

    Article  CAS  Google Scholar 

  45. Caliari, S. R. et al. Sci. Rep. 6, 21387 (2016).

    Article  CAS  Google Scholar 

  46. Burdick, J. A. & Murphy, W. L. Nat. Commun. 3, 1269 (2012).

    Article  Google Scholar 

  47. Li, L., Charati, M. B. & Kiick, K. L. Polym. Chem. 1, 1160–1170 (2010).

    Article  CAS  Google Scholar 

  48. Dooling, L. J., Buck, M. E., Zhang, W. B. & Tirrell, D. A. Adv. Mater. 28, 4651–4657 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the National Institutes of Health (EB00262, EB08396 and 1UC4DK104196), the RESBIO Technology Resource for Polymeric Biomaterials (P41-EB001046), the Center for Engineering MechanoBiology (CEMB), an NSF Science and Technology Center (CMMI: 15-48571) and the Biological Design Center at Boston University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jeroen Eyckmans or Christopher S. Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Eyckmans, J. & Chen, C. Designer biomaterials for mechanobiology. Nature Mater 16, 1164–1168 (2017). https://doi.org/10.1038/nmat5049

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat5049

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research