Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Isotope engineering of van der Waals interactions in hexagonal boron nitride

Abstract

Hexagonal boron nitride is a model lamellar compound where weak, non-local van der Waals interactions ensure the vertical stacking of two-dimensional honeycomb lattices made of strongly bound boron and nitrogen atoms. We study the isotope engineering of lamellar compounds by synthesizing hexagonal boron nitride crystals with nearly pure boron isotopes (10B and 11B) compared to those with the natural distribution of boron (20 at% 10B and 80 at% 11B). On the one hand, as with standard semiconductors, both the phonon energy and electronic bandgap varied with the boron isotope mass, the latter due to the quantum effect of zero-point renormalization. On the other hand, temperature-dependent experiments focusing on the shear and breathing motions of adjacent layers revealed the specificity of isotope engineering in a layered material, with a modification of the van der Waals interactions upon isotope purification. The electron density distribution is more diffuse between adjacent layers in 10BN than in 11BN crystals. Our results open perspectives in understanding and controlling van der Waals bonding in layered materials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Isotope mass dependence of vibrational excitations.
Figure 2: Isotope mass dependence of the bandgap energy due to zero-point renormalization.
Figure 3: Shear motion of adjacent layers.
Figure 4: Breathing motion of adjacent layers.
Figure 5: Electronic density in 10BN and 11BN.
Figure 6: Electronic isodensity contours in a plane parallel to the c-axis.

References

  1. 1

    Bigeleisen, J. & Goeppert-Mayer, M. Calculation of equilibrium constants for isotopic exchange reactions. J. Chem. Phys. 15, 261–267 (1947).

    CAS  Google Scholar 

  2. 2

    Simmons, E. M. & Hartwig, J. F. On the interpretation of deuterium kinetic isotope effects in C-H bond functionalizations by transition-metal complexes. Angew. Chem. Int. Ed. 51, 3066–3072 (2012).

    CAS  Google Scholar 

  3. 3

    Kohen, A. & Limbach, H.-H. Isotope Effects in Chemistry and Biology (CRC Press, 2006).

    Google Scholar 

  4. 4

    Maxwell, E. Isotope effect in the superconductivity of mercury. Phys. Rev. 78, 477 (1950).

    CAS  Google Scholar 

  5. 5

    Cardona, M. & Thewalt, M. L. W. Isotope effects on the optical spectra of semiconductors. Rev. Mod. Phys. 77, 1173–1224 (2005).

    CAS  Google Scholar 

  6. 6

    Kane, B. E. A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998).

    CAS  Google Scholar 

  7. 7

    Balasubramanian, G. et al. Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater. 8, 383–387 (2009).

    CAS  Google Scholar 

  8. 8

    Itoh, K. M. & Watanabe, H. Isotope engineering of silicon and diamond for quantum computing and sensing applications. MRS Commun. 4, 143–157 (2014).

    CAS  Google Scholar 

  9. 9

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    CAS  Google Scholar 

  10. 10

    Ikabata, Y., Imamura, Y. & Nakai, H. Interpretation of intermolecular geometric isotope effect in hydrogen bonds: nuclear orbital plus molecular orbital study. J. Phys. Chem. A 115, 1433–1439 (2011).

    CAS  Google Scholar 

  11. 11

    Subramanian, C., Suri, A. K. & Ch. Murthy, T. S. R. Development of boron-based materials for nuclear applications. BARC Newsletter 313, 14–22 (2010).

    CAS  Google Scholar 

  12. 12

    Barth, R. F., Soloway, A. H., Fairchild, R. G. & Brugger, R. M. Boron neutron capture therapy for cancer. Realities and prospects. Cancer 70, 2995–3007 (1992).

    CAS  Google Scholar 

  13. 13

    Lindsay, L. & Broido, D. A. Enhanced thermal conductivity and isotope effect in single-layer hexagonal boron nitride. Phys. Rev. B 84, 155421 (2011).

    Google Scholar 

  14. 14

    Giles, A. J. et al. Nat. Mater.http://dx.doi.org/10.1038/nmat5047 (2017).

  15. 15

    Hoffman, T. B., Clubine, B., Zhang, Y., Snow, K. & Edgar, J. H. Optimization of NiCr flux growth for hexagonal boron nitride single crystals. J. Crystal Growth 393, 114–118 (2014).

    CAS  Google Scholar 

  16. 16

    Cuscó, R., Gil, B., Cassabois, G. & Artús, L. Temperature dependence of Raman-active phonons and anharmonic interactions in layered hexagonal BN. Phys. Rev. B 94, 155435 (2016).

    Google Scholar 

  17. 17

    Göbel, A., Ruf, T., Zhang, J. M., Lauck, R. & Cardona, M. Phonons and fundamental gap in ZnSe: effects of the isotopic composition. Phys. Rev. B 59, 2749–2759 (1999).

    Google Scholar 

  18. 18

    Hass, K. C., Tamor, M. A., Anthony, T. R. & Banholzer, W. F. Lattice dynamics and Raman spectra of isotopically mixed diamond. Phys. Rev. B 45, 7171–7182 (1992).

    CAS  Google Scholar 

  19. 19

    Watanabe, K., Taniguchi, T. & Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 3, 404–409 (2004).

    CAS  Google Scholar 

  20. 20

    Watanabe, K., Taniguchi, T., Niiyama, T., Miya, K. & Taniguchi, M. Far-ultraviolet plane-emission handheld device based on hexagonal boron nitride. Nat. Photon. 3, 591–594 (2009).

    CAS  Google Scholar 

  21. 21

    Watanabe, K. et al. Hexagonal boron nitride as a new ultraviolet luminescent material and its application—Fluorescence properties of hBN single-crystal powder. Diam. Relat. Mater. 20, 849–852 (2011).

    CAS  Google Scholar 

  22. 22

    Cassabois, G., Valvin, P. & Gil, B. Hexagonal boron nitride is an indirect bandgap semiconductor. Nat. Photon. 10, 262–266 (2016).

    CAS  Google Scholar 

  23. 23

    Vuong, T. Q. P. et al. Phonon symmetries in hexagonal boron nitride probed by incoherent light emission. 2D Mater. 4, 11004 (2017).

    Google Scholar 

  24. 24

    Vuong, T. Q. P. et al. Overtones of interlayer shear modes in the phonon-assisted emission spectrum of hexagonal boron nitride. Phys. Rev. B 95, 45207 (2017).

    Google Scholar 

  25. 25

    Cassabois, G., Valvin, P. & Gil, B. Intervalley scattering in hexagonal boron nitride. Phys. Rev. B 93, 35207 (2016).

    Google Scholar 

  26. 26

    Giustino, F., Louie, S. G. & Cohen, M. L. Electron-phonon renormalization of the direct band gap of diamond. Phys. Rev. Lett. 105, 265501 (2010).

    Google Scholar 

  27. 27

    Du, X. Z., Frye, C. D., Edgar, J. H., Lin, J. Y. & Jiang, H. X. Temperature dependence of the energy bandgap of two-dimensional hexagonal boron nitride probed by excitonic photoluminescence. J. Appl. Phys. 115, 53503 (2014).

    Google Scholar 

  28. 28

    Allen, P. B. & Heine, V. Theory of the temperature dependence of electronic band structures. J. Phys. C 9, 2305–2312 (1976).

    CAS  Google Scholar 

  29. 29

    Lautenschlager, P., Garriga, M. & Cardona, M. Temperature dependence of the interband critical-point parameters of InP. Phys. Rev. B 36, 4813–4820 (1987).

    CAS  Google Scholar 

  30. 30

    Zollner, S., Cardona, M. & Gopalan, S. Isotope and temperature shifts of direct and indirect band gaps in diamond-type semiconductors. Phys. Rev. B 45, 3376–3385 (1992).

    CAS  Google Scholar 

  31. 31

    Tan, P. H. et al. The shear mode of multilayer graphene. Nat. Mater. 11, 294–300 (2012).

    CAS  Google Scholar 

  32. 32

    Molina-Sánchez, A. & Wirtz, L. Phonons in single-layer and few-layer MoS2 and WS2 . Phys. Rev. B 84, 155413 (2011).

    Google Scholar 

  33. 33

    Paszkowicz, W., Pelka, J. B., Knapp, M., Szyszko, T. & Podsiadlo, S. Lattice parameters and anisotropic thermal expansion of hexagonal boron nitride in the 10–297.5 K temperature range. Appl. Phys. A 75, 431–435 (2002).

    CAS  Google Scholar 

  34. 34

    Yates, B., Overy, M. J. & Pirgon, O. The anisotropic thermal expansion of boron nitride. Philos. Mag. 32, 847–857 (1975).

    CAS  Google Scholar 

  35. 35

    Popov, V. N. & Van Alsenoy, C. Low-frequency phonons of few-layer graphene within a tight-binding model. Phys. Rev. B 90, 245429 (2014).

    CAS  Google Scholar 

  36. 36

    Gao, W. & Tkatchenko, A. Sliding mechanisms in multilayered hexagonal boron nitride and graphene: the effects of directionality, thickness, and sliding constraints. Phys. Rev. Lett. 114, 096101 (2015).

    Google Scholar 

  37. 37

    Savini, G. et al. Bending modes, elastic constants and mechanical stability of graphitic systems. Carbon 49, 62–69 (2011).

    CAS  Google Scholar 

  38. 38

    Serrano, J. et al. Vibrational properties of hexagonal boron nitride: inelastic X-ray scattering and ab initio calculations. Phys. Rev. Lett. 98, 95503 (2007).

    CAS  Google Scholar 

  39. 39

    Vuong, T. Q. P. et al. Exciton-phonon interaction in the strong-coupling regime in hexagonal boron nitride. Phys. Rev. B 95, 201202 (2017).

    Google Scholar 

  40. 40

    van Smaalen, S., Palatinus, L. & Schneider, M. The maximum-entropy method in superspace. Acta Crystallogr. A 59, 459–469 (2003).

    Google Scholar 

  41. 41

    Yamamura, S., Takata, M. & Sakata, M. Charge density of hexagonal boron nitride using synchrotron radiation powder data by maximum entropy method. J. Phys. Chem. Phys. Sol. 58, 177–183 (1997).

    CAS  Google Scholar 

  42. 42

    Topsakal, M., Aktürk, E. & Ciraci, S. First-principles study of two- and one-dimensional honeycomb structures of boron nitride. Phys. Rev. B 79, 115442 (2009).

    Google Scholar 

  43. 43

    Catellani, A., Posternak, M., Baldereschi, A. & Freeman, A. J. Bulk and surface electronic structure of hexagonal boron nitride. Phys. Rev. B 36, 6105–6111 (1987).

    CAS  Google Scholar 

  44. 44

    Yamanaka, T. & Morimoto, S. Isotope effect on anharmonic thermal atomic vibration and refinement of 12C and 13C diamond. Acta Crystallogr. B 52, 232–238 (1996).

    Google Scholar 

  45. 45

    Nörtershäuser, W. & Geppert, C. in The Euroschool on Exotic Beams Vol. IV (eds Scheidenberger, C. & Pfützner, M.) 233 (Lecture notes in Physics 879, Springer, 2014).

    Google Scholar 

  46. 46

    Fleming, D. G., Manz, J., Sato, K. & Takayanagi, T. Fundamental change in the nature of chemical bonding by isotopic substitution. Angew. Chem. Int. Ed. 53, 13706–13709 (2014).

    CAS  Google Scholar 

  47. 47

    Reilly, A. M. & Tkatchenko, A. Role of dispersion interactions in the polymorphism and entropic stabilization of the aspirin crystal. Phys. Rev. Lett. 113, 055701 (2014).

    Google Scholar 

  48. 48

    Folpini, G. et al. Strong local-field enhancement of the nonlinear soft-mode response in a molecular crystal. Phys. Rev. Lett. 119, 097404 (2017).

    Google Scholar 

  49. 49

    Watanabe, H., Nebel, C. E. & Shikata, S. Isotopic homojunction band engineering from diamond. Science 324, 1425–1428 (2009).

    CAS  Google Scholar 

  50. 50

    Lovchinsky, I. et al. Magnetic resonance spectroscopy of an atomically thin material using a single-spin qubit. Science 355, 503–507 (2017).

    CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge C. L’Henoret for his technical support at the mechanics workshop, and A. Dréau, V. Jacques and E. Rousseau for fruitful discussions. This work and the PhD funding of T.Q.P.V. were financially supported by the network GaNeX (ANR-11-LABX-0014). GaNeX belongs to the publicly funded Investissements d’Avenir program managed by the French ANR agency. G.C. is member of ‘Institut Universitaire de France’. B.G. acknowledges the Russian Megagrant program (14.W03.31.0011) at the Ioffe Institute, Saint Petersburg, Russia. This work was also supported by the Spanish MINECO/FEDER under contract MAT2015-71305-R. The hBN crystal growth is based upon work supported by the National Science Foundation under Grant No. CMMI 1538127.

Author information

Affiliations

Authors

Contributions

S.L. and J.H.E. synthesized the samples. T.Q.P.V., P.V. and G.C. performed photoluminescence spectroscopy. A.V.d.L. the X-ray diffraction measurements. R.C., L.A. and T.M. the Raman scattering experiments. All authors contributed to the interpretation of the results. The project was initiated by B.G. and the manuscript was written by G.C.

Corresponding author

Correspondence to G. Cassabois.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 628 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vuong, T., Liu, S., Van der Lee, A. et al. Isotope engineering of van der Waals interactions in hexagonal boron nitride. Nat. Mater. 17, 152–158 (2018). https://doi.org/10.1038/nmat5048

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing