Abstract

Piezoelectricity, the linear relationship between stress and induced electrical charge, has attracted recent interest due to its manifestation in biological molecules such as synthetic polypeptides or amino acid crystals, including gamma (γ) glycine. It has also been demonstrated in bone, collagen, elastin and the synthetic bone mineral hydroxyapatite. Piezoelectric coefficients exhibited by these biological materials are generally low, typically in the range of 0.1–10 pm V−1, limiting technological applications. Guided by quantum mechanical calculations we have measured a high shear piezoelectricity (178 pm V−1) in the amino acid crystal beta (β) glycine, which is of similar magnitude to barium titanate or lead zirconate titanate. Our calculations show that the high piezoelectric coefficients originate from an efficient packing of the molecules along certain crystallographic planes and directions. The highest predicted piezoelectric voltage constant for β-glycine crystals is 8 V mN−1, which is an order of magnitude larger than the voltage generated by any currently used ceramic or polymer.

  • Subscribe to Nature Materials for full access:

    $59

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    & On the piezoelectric effect of bone. J. Phys. Soc. Jpn 12, 1158–1162 (1957).

  2. 2.

    & Piezoelectric effects in collagen. Jpn. J. Appl. Phys. 3, 117–121 (1964).

  3. 3.

    et al. Ferroelectric switching of elastin. Proc. Natl Acad. Sci. USA 111, E2780–E2786 (2014).

  4. 4.

    , , , & Piezoelectricity in poled hydroxyapatite ceramics. J. Am. Ceram. Soc. 97, 2867–2872 (2014).

  5. 5.

    et al. Virus-based piezoelectric energy generation. Nat. Nanotech. 7, 351–356 (2012).

  6. 6.

    Fundamentals of Piezoelectricity (Oxford Univ. Press, 2012).

  7. 7.

    , & Molecular mechanism of polarization and piezoelectric effect in super-twisted collagen. ACS Biomater. Sci. Eng. 2, 929–936 (2016).

  8. 8.

    & Piezoelectric properties of oriented deoxyribonucleate films. J. Polym. Sci. Polym. Phys. Ed. 14, 63–79 (1976).

  9. 9.

    & Elastic and piezoelectric coefficients of single-crystal barium titanate. Phys. Rev. 111, 143–148 (1958).

  10. 10.

    History and recent progress in piezoelectric polymers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 1277–1290 (2000).

  11. 11.

    Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys. 61, 1267–1324 (1998).

  12. 12.

    , , & 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett. 10, 2133–2137 (2010).

  13. 13.

    , & Piezoelectric mass-sensing devices as biosensors—an alternative to optical biosensors? Angew. Chem. Int. Ed. 39, 4004–4032 (2000).

  14. 14.

    & Thin film piezoelectrics for MEMS. J. Electroceram. 12, 7–17 (2004).

  15. 15.

    et al. Electromechanical coupling coefficient for surface acoustic waves in single-crystal bulk aluminum nitride. Appl. Phys. Lett. 84, 4611–4613 (2004).

  16. 16.

    & Scanning Probe Microscopy–Principle of Operation, Instrumentation, and Probes (Springer, 2004).

  17. 17.

    Piezo-electric and allied phenomena in Rochelle salt. Phys. Rev. 17, 475–481 (1921).

  18. 18.

    Physical Acoustics: Principles and Methods (Academic, 1921).

  19. 19.

    Piezoelectric and pyroelectric properties of protein amino acids as basic materials of soft state physics. Ferroelectrics 238, 211–218 (2000).

  20. 20.

    , & Piezoelectricity in protein amino acids. Phys. Solid State 53, 1191–1193 (2011).

  21. 21.

    & The crystal structure of glycine. J. Am. Chem. Soc. 61, 1087–1103 (1939).

  22. 22.

    Crystal structure of [beta]-glycine. Nature 183, 390–391 (1959).

  23. 23.

    The crystal structure of γ-glycine. Acta Crystallogr. 11, 225–226 (1958).

  24. 24.

    et al. Effect of high pressure on the crystal structures of polymorphs of glycine. Cryst. Growth Des. 5, 1415–1427 (2005).

  25. 25.

    et al. Origin and structure of polar domains in doped molecular crystals. Nat. Commun. 7, 13351 (2016).

  26. 26.

    et al. Nanoscale ferroelectricity in crystalline γ-glycine. Adv. Funct. Mater. 22, 2996–3003 (2012).

  27. 27.

    , , & Structural, dielectric and piezoelectric properties of nonlinear optical γ-glycine single crystals. Phys. B: Condens. Matter 406, 2594–2600 (2011).

  28. 28.

    , , & Electromechanical imaging and spectroscopy of ferroelectric and piezoelectric materials: state of the art and prospects for the future. J. Am. Ceram. Soc. 92, 1629–1647 (2009).

  29. 29.

    , , & Self-assembly of diphenylalanine peptide with controlled polarization for power generation. Nat. Commun. 7, 13566 (2016).

  30. 30.

    Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford Univ. Press, 2016).

  31. 31.

    , , & Full-color passive-matrix organic EL displays. Displays 22, 43–47 (2001).

  32. 32.

    et al. Fabricating genetically engineered high-power lithium-ion batteries using multiple virus genes. Science 324, 1051–1055 (2009).

  33. 33.

    et al. Biologically templated photocatalytic nanostructures for sustained light-driven water oxidation. Nat. Nanotech. 5, 340–344 (2010).

  34. 34.

    & Lattice dynamical and dielectric properties of L-amino acids. Phys. Rev. B 74, 064301 (2006).

  35. 35.

    , , & Fundamentals of Piezoelectric Sensorics: Mechanical, Dielectric, and Thermodynamical Properties of Piezoelectric Materials (Springer, 2006).

  36. 36.

    Elastic, piezoelectric and dielectric properties of ZnO and CdS single crystals in a wide range of temperatures. Solid State Commun. 35, 305–310 (1980).

  37. 37.

    , , & Piezoelectric and dielectric properties of collagen films. Phys. Status Solidi (a) 176, 1077–1083 (1999).

  38. 38.

    PVDF piezoelectric polymer. Sensor Rev. 21, 118–126 (2001).

  39. 39.

    , , & The strong piezoelectricity in polyvinylidene fluroide (PVDF). Ultrasonics 14, 15–24 (1976).

  40. 40.

    , , , & Strong piezoelectricity in bioinspired peptide nanotubes. ACS Nano 4, 610–614 (2010).

  41. 41.

    Piezoelectric Ceramics Vol. 3 (Elsevier, 2010).

  42. 42.

    & Lead-free piezoelectric ceramics: alternatives for PZT? J. Electroceram. 19, 113–126 (2007).

  43. 43.

    et al. High-performance, high-temperature piezoelectric BiB3O6 crystals. J. Mater. Chem. C 3, 329–338 (2015).

  44. 44.

    , , & Solvent effect on crystal polymorphism: why addition of methanol or ethanol to aqueous solutions induces the precipitation of the least stable β form of glycine. Angew. Chem. Int. Ed. 44, 3226–3229 (2005).

  45. 45.

    , , , & Crystallization in polymorphic systems: the solution-mediated transformation of β to α glycine. Cryst. Growth Des. 3, 53–60 (2003).

  46. 46.

    et al. In situ observation of the humidity controlled polymorphic phase transformation in glycine microcrystals. Cryst. Growth Des. 14, 4138–4142 (2014).

  47. 47.

    et al. Growth and nonlinear optical properties of β-glycine crystals grown on Pt substrates. Cryst. Growth Des. 14, 2831–2837 (2014).

  48. 48.

    , , & Concomitant crystallization of glycine on patterned substrates: the effect of pH on the polymorphic outcome. Cryst. Growth Des. 8, 108–113 (2008).

  49. 49.

    , & Raman study of low-frequency modes in three glycine polymorphs. J. Chem. Phys. 134, 045102 (2011).

  50. 50.

    et al. An organic-inorganic perovskite ferroelectric with large piezoelectric response. Science 357, 306–309 (2017).

  51. 51.

    Electromechanical properties of polarized polyvinylidene fluoride films as studied by the piezoelectric resonance method. J. Appl. Phys. 47, 949–955 (1976).

  52. 52.

    & Embedded and DFT calculations on the crystal structures of small alkanes, notably propane. Cryst. Growth Des. 17, 1636–1646 (2017).

  53. 53.

    et al. Biomimetic approaches in bone tissue engineering: integrating biological and physicomechanical strategies. Adv. Drug Deliv. Rev. 84, 1–29 (2015).

  54. 54.

    et al. Unusually large Young’s moduli of amino acid molecular crystals. Angew. Chem. Int. Ed. 54, 13566–13570 (2015).

  55. 55.

    & Phonons and static dielectric constant in CaTiO3 from first principles. Phys. Rev. B 62, 3735–3743 (2000).

  56. 56.

    & Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

  57. 57.

    , , & A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

  58. 58.

    & Dielectric and vibrational properties of amino acids. J. Chem. Phys. 121, 5201–5210 (2004).

  59. 59.

    , & Systematic treatment of displacements, strains, and electric fields in density-functional perturbation theory. Phys. Rev. B 72, 035105 (2005).

  60. 60.

    & Growth of nonlinear optical γ-glycine crystals. J. Cryst. Growth 236, 376–380 (2002).

  61. 61.

    & Characterisation of Ferroelectric Bulk Materials and Thin Films 267–275 (Springer, 2002).

Download references

Acknowledgements

The authors thank E. O’Connell, A. Stewart and U. Bangert for use of their optical microscope. This publication has emanated from research conducted with the financial support of Science Foundation Ireland (SFI) and is co-funded under the European Regional Development Fund under Grant Number 13/RC/2073. D.T. acknowledges support from SFI under Grant Number 15/CDA/3491, and for provision of computing resources at the SFI/Higher Education Authority Irish Center for High-End Computing (ICHEC). A.L.K. acknowledges support from CICECO—Aveiro Institute of Materials (Ref. FCT UID/CTM/50011/2013), financed by national funds through the FCT/MEC and when applicable co-financed by FEDER under the PT2020 Partnership Agreement. Funding from the Irish Research Council EMBARK Postgraduate Scholarship (RS/2012/337) to A.S. is acknowledged. S.A.M.T. acknowledges Enterprise Ireland and Erasmus for their long-standing support and funding.

Author information

Affiliations

  1. Department of Physics, University of Limerick, V94 T9PX, Ireland

    • Sarah Guerin
    • , Aimee Stapleton
    • , Drahomir Chovan
    • , Rabah Mouras
    • , Matthew Gleeson
    • , Cian McKeown
    • , Christophe Silien
    • , Fernando M. F. Rhen
    • , Ning Liu
    • , Syed A. M. Tofail
    •  & Damien Thompson
  2. Bernal Institute, University of Limerick, V94 T9PX, Ireland

    • Sarah Guerin
    • , Aimee Stapleton
    • , Drahomir Chovan
    • , Rabah Mouras
    • , Matthew Gleeson
    • , Cian McKeown
    • , Mohamed Radzi Noor
    • , Christophe Silien
    • , Fernando M. F. Rhen
    • , Ning Liu
    • , Tewfik Soulimane
    • , Syed A. M. Tofail
    •  & Damien Thompson
  3. Department of Chemical Sciences, University of Limerick, V94 T9PX, Ireland

    • Mohamed Radzi Noor
    •  & Tewfik Soulimane
  4. Department of Physics & CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal

    • Andrei L. Kholkin
  5. School of Natural Sciences and Mathematics, Ural Federal University, 620000 Ekaterinburg, Russia

    • Andrei L. Kholkin

Authors

  1. Search for Sarah Guerin in:

  2. Search for Aimee Stapleton in:

  3. Search for Drahomir Chovan in:

  4. Search for Rabah Mouras in:

  5. Search for Matthew Gleeson in:

  6. Search for Cian McKeown in:

  7. Search for Mohamed Radzi Noor in:

  8. Search for Christophe Silien in:

  9. Search for Fernando M. F. Rhen in:

  10. Search for Andrei L. Kholkin in:

  11. Search for Ning Liu in:

  12. Search for Tewfik Soulimane in:

  13. Search for Syed A. M. Tofail in:

  14. Search for Damien Thompson in:

Contributions

S.G. performed the computer simulations. S.G. and A.S. performed piezoelectric experiments. S.G. and D.C. determined crystallographic orientations and the magnitude of polarization in glycine polymorphs. S.G. grew glycine crystals in collaboration with M.R.N., T.S. and A.L.K. R.M. performed Raman characterization and mapping. M.G. performed XRD analysis under supervision of N.L. and C.S. C.M. performed SEM characterization under supervision of F.M.F.R. S.A.M.T. and D.T. designed and supervised the project. All authors contributed to writing the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Syed A. M. Tofail or Damien Thompson.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information