Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Plating and stripping calcium in an organic electrolyte

Subjects

Abstract

There is considerable interest in multivalent cation batteries, such as those based on magnesium, calcium or aluminium1,2,3,4,5,6,7,8,9,10,11. Most attention has focused on magnesium. In all cases the metal anode represents a significant challenge. Recent work has shown that calcium can be plated and stripped, but only at elevated temperatures, 75 to 100 °C, with small capacities, typically 0.165 mAh cm−2, and accompanied by significant side reactions7. Here we demonstrate that calcium can be plated and stripped at room temperature with capacities of 1 mAh cm−2 at a rate of 1 mA cm−2, with low polarization (100 mV) and in excess of 50 cycles. The dominant product is calcium, accompanied by a small amount of CaH2 that forms by reaction between the deposited calcium and the electrolyte, Ca(BH4)2 in tetrahydrofuran (THF). This occurs in preference to the reactions which take place in most electrolyte solutions forming CaCO3, Ca(OH)2 and calcium alkoxides, and normally terminate the electrochemistry. The CaH2 protects the calcium metal at open circuit. Although this work does not solve all the problems of calcium as an anode in calcium-ion batteries, it does demonstrate that significant quantities of calcium can be plated and stripped at room temperature with low polarization.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Electrochemical results of calcium plating/stripping in 1.5 M Ca(BH4)2 in THF.
Figure 2: Characterization of the product formed on calcium plating.
Figure 3: Cross-sectional images of Au electrodes at the end of calcium plating/stripping.
Figure 4: Accumulation of CaH2 on deposited electrode.

References

  1. Muldoon, J., Bucur, C. B. & Gregory, T. Quest for nonaqueous multivalent secondary batteries: magnesium and beyond. Chem. Rev. 114, 11683–11720 (2014).

    Article  CAS  Google Scholar 

  2. Aurbach, D. et al. Prototype systems for rechargeable magnesium batteries. Nature 407, 724–727 (2000).

    Article  CAS  Google Scholar 

  3. Yoo, H. D. et al. Mg rechargeable batteries: an on-going challenge. Energy Environ. Sci. 6, 2265–2279 (2013).

    Article  CAS  Google Scholar 

  4. Muldoon, J. et al. Electrolyte roadblocks to a magnesium rechargeable battery. Energy Environ. Sci. 5, 5941–5950 (2012).

    Article  CAS  Google Scholar 

  5. Hayashi, M., Arai, H., Ohtsuka, H. & Sakurai, Y. Electrochemical characteristics of calcium in organic electrolyte solutions and vanadium oxides as calcium hosts. J. Power Sources 119, 617–620 (2003).

    Article  Google Scholar 

  6. Lin, M. C. et al. An ultrafast rechargeable aluminium-ion battery. Nature 520, 324–328 (2015).

    Article  CAS  Google Scholar 

  7. Ponrouch, A., Frontera, C., Barde, F. & Palacin, M. R. Towards a calcium-based rechargeable battery. Nat. Mater. 15, 169–172 (2016).

    Article  CAS  Google Scholar 

  8. Tepavcevic, S., Slater, M., Johnson, C. S. & Rajh, T. Nanostructured layered cathode for Mg-ion batteries. Abstr. Pap. Am. Chem. Soc. 245, 770-ENFL (2013).

    Google Scholar 

  9. Kaveevivitchai, W. & Manthiram, A. High-capacity zinc-ion storage in an open-tunnel oxide for aqueous and nonaqueous Zn-ion batteries. J. Mater. Chem. A 4, 18737–18741 (2016).

    Article  CAS  Google Scholar 

  10. Wang, R. Y. et al. Reversible multivalent (monovalent, divalent, trivalent) ion insertion in open framework materials. Adv. Energy Mater. 5, 1401869 (2015).

    Article  Google Scholar 

  11. Okoshi, M., Yamada, Y., Komaba, S., Yamada, A. & Nakai, H. Theoretical analysis of interactions between potassium ions and organic electrolyte solvents: a comparison with lithium, sodium, and magnesium ions. J. Electrochem. Soc. 164, A54–A60 (2017).

    Article  CAS  Google Scholar 

  12. Aurbach, D., Skaletsky, R. & Gofer, Y. The electrochemical-behavior of calcium electrodes in a few organic electrolytes. J. Electrochem. Soc. 138, 3536–3545 (1991).

    Article  CAS  Google Scholar 

  13. Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503–11618 (2014).

    Article  CAS  Google Scholar 

  14. Gofer, Y. et al. Improved electrolyte solutions for rechargeable magnesium batteries. Electrochem. Solid-State Lett. 9, A257–A260 (2006).

    Article  CAS  Google Scholar 

  15. Tepavcevic, S. et al. Nanostructured layered cathode for rechargeable Mg-ion batteries. ACS Nano 9, 8194–8205 (2015).

    Article  CAS  Google Scholar 

  16. Canepa, P. et al. Odyssey of multivalent cathode materials: open questions and future challenges. Chem. Rev. 117, 4287–4341 (2017).

    Article  CAS  Google Scholar 

  17. Kaveevivitchai, W., Huq, A. & Manthiram, A. Microwave-assisted chemical insertion: a rapid technique for screening cathodes for Mg-ion batteries. J. Mater. Chem. A 5, 2309–2318 (2017).

    Article  CAS  Google Scholar 

  18. Yu, X. W. & Manthiram, A. Performance enhancement and mechanistic studies of magnesium–sulfur cells with an advanced cathode structure. ACS Energy Lett. 1, 431–437 (2016).

    Article  CAS  Google Scholar 

  19. Keyzer, E. N. et al. Mg(PF6)(2)-based electrolyte systems: understanding electrolyte–electrode interactions for the development of Mg-ion batteries. J. Am. Chem. Soc. 138, 8682–8685 (2016).

    Article  CAS  Google Scholar 

  20. See, K. A. et al. A high capacity calcium primary cell based on the Ca–S system. Adv. Energy Mater. 3, 1056–1061 (2013).

    Article  CAS  Google Scholar 

  21. Tojo, T., Sugiura, Y., Inada, R. & Sakurai, Y. Reversible calcium ion batteries using a dehydrated prussian blue analogue cathode. Electrochim. Acta 207, 22–27 (2016).

    Article  CAS  Google Scholar 

  22. Amatucci, G. G. et al. Investigation of yttrium and polyvalent ion intercalation into nanocrystalline vanadium oxide. J. Electrochem. Soc. 148, A940–A950 (2001).

    Article  CAS  Google Scholar 

  23. Wang, R. Y., Wessells, C. D., Huggins, R. A. & Cui, Y. Highly reversible open framework nanoscale electrodes for divalent ion batteries. Nano Lett. 13, 5748–5752 (2013).

    Article  CAS  Google Scholar 

  24. Smeu, M. et al. Theoretical investigation of Chevrel phase materials for cathodes accommodating Ca2+ ions. J. Power Sources 306, 431–436 (2016).

    Article  CAS  Google Scholar 

  25. Padigi, P., Goncher, G., Evans, D. & Solanki, R. Potassium barium hexacyanoferrate—a potential cathode material for rechargeable calcium ion batteries. J. Power Sources 273, 460–464 (2015).

    Article  CAS  Google Scholar 

  26. Padigi, P. et al. Calcium cobalt hexacyanoferrate cathodes for rechargeable divalent ion batteries. J. New Mater. Electrochem. Syst. 19, 57–64 (2016).

    Article  CAS  Google Scholar 

  27. Shiga, T., Kondo, H., Kato, Y. & Inoue, M. Insertion of calcium ion into prussian blue analogue in nonaqueous solutions and its application to a rechargeable battery with dual carriers. J. Phys. Chem. C 119, 27946–27953 (2015).

    Article  CAS  Google Scholar 

  28. Mohtadi, R., Matsui, M., Arthur, T. S. & Hwang, S. J. Magnesium borohydride: from hydrogen storage to magnesium battery. Angew. Chem. Int. Ed. 51, 9780–9783 (2012).

    Article  CAS  Google Scholar 

  29. Borisov, A. P. & Makhaev, V. D. Preparation of calcium cyclopentadienyl complexes using calcium borohydride. Russ. Chem. B+ 42, 339–340 (1993).

    Article  Google Scholar 

  30. Kuperman, N. et al. High performance Prussian Blue cathode for nonaqueous Ca-ion intercalation battery. J. Power Sources 342, 414–418 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

P.G.B. is indebted to the EPSRC for financial support, including the Supergen Energy Storage grant. We acknowledge G. Llewellyn and J. Wickens for the GC–MS experiments.

Author information

Authors and Affiliations

Authors

Contributions

D.W. and X.G. designed experiments and performed electrochemical studies and characterization. D.W., X.G., Y.C., L.J., C.K. and P.G.B. analysed and interpreted the data. P.G.B. wrote the manuscript.

Corresponding author

Correspondence to Peter G. Bruce.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 432 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Gao, X., Chen, Y. et al. Plating and stripping calcium in an organic electrolyte. Nature Mater 17, 16–20 (2018). https://doi.org/10.1038/nmat5036

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat5036

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing