Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Critical assessment of charge mobility extraction in FETs

Mobility is an important charge-transport parameter in organic, inorganic and hybrid semiconductors. We outline some of the common pitfalls of mobility extraction from field-effect transistor (FET) measurements and propose practical recommendations to avoid reporting erroneous mobilities in publications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Common nonlinearities in FET transfer characteristics.
Figure 2: Illustration of mobility extraction artefacts in devices with non-ideal characteristics.
Figure 3: FET and Hall effect measurements in single-crystal rubrene OFET.

References

  1. 1

    Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices 3rd edn (Wiley, 2007).

    Google Scholar 

  2. 2

    Xie, W., Zhang, X., Leighton, C. & Frisbie, C. D. Adv. Electron. Mater. 3, 1600369 (2017).

    Article  Google Scholar 

  3. 3

    Chen, Y. et al. Nat. Commun. 7, 12253 (2016).

    CAS  Article  Google Scholar 

  4. 4

    Podzorov, V., Gershenson, M. E., Kloc, Ch., Zeis, R. & Bucher, E. Appl. Phys. Lett. 84, 3301–3303 (2004).

    CAS  Article  Google Scholar 

  5. 5

    Schmidt, H., Giustiniano, F. & Eda, G. Chem. Soc. Rev. 44, 7715–7736 (2015).

    CAS  Article  Google Scholar 

  6. 6

    Jang, J., Liu, W., Son, J. S. & Talapin, D. V. Nano Lett. 14, 653–662 (2014).

    CAS  Article  Google Scholar 

  7. 7

    Sun, D.-m. et al. Nat. Nanotech. 6, 156–161 (2011).

    CAS  Article  Google Scholar 

  8. 8

    Bao, Z. & Locklin, J. Organic Field-Effect Transistors Ch. 2 (CRC press, 2007).

    Google Scholar 

  9. 9

    Podzorov, V. MRS Bull. 38, 15–24 (2013).

    Article  Google Scholar 

  10. 10

    Podzorov, V., Pudalov, V. M. & Gershenson, M. E. Appl. Phys. Lett. 82, 1739–1741 (2003).

    CAS  Article  Google Scholar 

  11. 11

    Podzorov, V., Sysoev, S. E., Loginova, E., Pudalov, V. M. & Gershenson, M. E. Appl. Phys. Lett. 83, 3504–3506 (2003).

    CAS  Article  Google Scholar 

  12. 12

    Troisi, A. & Orlandi, G. Phys. Rev. Lett. 96, 086601 (2006).

    Article  Google Scholar 

  13. 13

    Sánchez-Carrera, R. S., Paramonov, P., Day, G. M., Coropceanu, V. & Brédas, J.-L. J. Am. Chem. Soc. 132, 14437–14446 (2010).

    Article  Google Scholar 

  14. 14

    Fratini, S., Mayou, D. & Ciuchi, S. Adv. Funct. Mater. 26, 2292–2315 (2016).

    CAS  Article  Google Scholar 

  15. 15

    Xia, Y., Cho, J. H., Lee, J., Ruden, P. P. & Frisbie, C. D. Adv. Mater. 21, 2174–2179 (2009).

    CAS  Article  Google Scholar 

  16. 16

    Yi, H. T., Chen, Y., Czelen, K. & Podzorov, V. Adv. Mater. 23, 5807–5811 (2011).

    CAS  Article  Google Scholar 

  17. 17

    Bittle, E. G., Basham, J. I., Jackson, T. N., Jurchescu, O. D. & Gundlach, D. J. Nat. Commun. 7, 10908 (2016).

    CAS  Article  Google Scholar 

  18. 18

    Okachi, T., Kashiki, T. & Ohya, K. Proc. SPIE 9568, 95680I (2015).

    Article  Google Scholar 

  19. 19

    Yi, H. T., Gartstein, Y. N. & Podzorov, V. Sci. Rep. 6, 23650 (2016).

    CAS  Article  Google Scholar 

  20. 20

    Uemura, T. et al. Adv. Mater. 28, 151–155 (2016).

    CAS  Article  Google Scholar 

  21. 21

    Nikolka, M. et al. Nat. Mater. 16, 356–362 (2017).

    CAS  Article  Google Scholar 

  22. 22

    Choi, H. H., Cho, K., Frisbie, C. D., Sirringhaus, H. & Podzorov, V. Zenodo https://doi.org/10.5281/zenodo.1050698 (2017).

  23. 23

    Ren, X. et al. Adv. Electron. Mater. 3, 1700018 (2017).

    Article  Google Scholar 

  24. 24

    Takeya, J. et al. J. Appl. Phys. 94, 5800–5804 (2003).

    CAS  Article  Google Scholar 

  25. 25

    Newman, C. R., Chesterfield, R. J., Merlo, J. A. & Frisbie, C. D. Appl. Phys. Lett. 85, 422–424 (2004).

    CAS  Article  Google Scholar 

  26. 26

    Chen, Y. et al. Phys. Chem. Chem. Phys. 14, 14142–14151 (2012).

    CAS  Article  Google Scholar 

  27. 27

    https://en.wikipedia.org/wiki/American_wire_gauge

  28. 28

    Podzorov, V., Menard, E., Rogers, J. A. & Gershenson, M. E. Phys. Rev. Lett. 95, 226601 (2005).

    CAS  Article  Google Scholar 

  29. 29

    Uemura, T. et al. Curr. Appl. Phys. 12, S87–S91 (2012).

    Article  Google Scholar 

  30. 30

    Xie, W., Wang, S., Zhang, X., Leighton, C. & Frisbie, C. D. Phys. Rev. Lett. 113, 246602 (2014).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Choi, H., Cho, K., Frisbie, C. et al. Critical assessment of charge mobility extraction in FETs. Nature Mater 17, 2–7 (2018). https://doi.org/10.1038/nmat5035

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing