Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Critical assessment of charge mobility extraction in FETs

Mobility is an important charge-transport parameter in organic, inorganic and hybrid semiconductors. We outline some of the common pitfalls of mobility extraction from field-effect transistor (FET) measurements and propose practical recommendations to avoid reporting erroneous mobilities in publications.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Common nonlinearities in FET transfer characteristics.
Figure 2: Illustration of mobility extraction artefacts in devices with non-ideal characteristics.
Figure 3: FET and Hall effect measurements in single-crystal rubrene OFET.

References

  1. Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices 3rd edn (Wiley, 2007).

    Google Scholar 

  2. Xie, W., Zhang, X., Leighton, C. & Frisbie, C. D. Adv. Electron. Mater. 3, 1600369 (2017).

    Article  Google Scholar 

  3. Chen, Y. et al. Nat. Commun. 7, 12253 (2016).

    Article  CAS  Google Scholar 

  4. Podzorov, V., Gershenson, M. E., Kloc, Ch., Zeis, R. & Bucher, E. Appl. Phys. Lett. 84, 3301–3303 (2004).

    Article  CAS  Google Scholar 

  5. Schmidt, H., Giustiniano, F. & Eda, G. Chem. Soc. Rev. 44, 7715–7736 (2015).

    Article  CAS  Google Scholar 

  6. Jang, J., Liu, W., Son, J. S. & Talapin, D. V. Nano Lett. 14, 653–662 (2014).

    Article  CAS  Google Scholar 

  7. Sun, D.-m. et al. Nat. Nanotech. 6, 156–161 (2011).

    Article  CAS  Google Scholar 

  8. Bao, Z. & Locklin, J. Organic Field-Effect Transistors Ch. 2 (CRC press, 2007).

    Google Scholar 

  9. Podzorov, V. MRS Bull. 38, 15–24 (2013).

    Article  Google Scholar 

  10. Podzorov, V., Pudalov, V. M. & Gershenson, M. E. Appl. Phys. Lett. 82, 1739–1741 (2003).

    Article  CAS  Google Scholar 

  11. Podzorov, V., Sysoev, S. E., Loginova, E., Pudalov, V. M. & Gershenson, M. E. Appl. Phys. Lett. 83, 3504–3506 (2003).

    Article  CAS  Google Scholar 

  12. Troisi, A. & Orlandi, G. Phys. Rev. Lett. 96, 086601 (2006).

    Article  Google Scholar 

  13. Sánchez-Carrera, R. S., Paramonov, P., Day, G. M., Coropceanu, V. & Brédas, J.-L. J. Am. Chem. Soc. 132, 14437–14446 (2010).

    Article  Google Scholar 

  14. Fratini, S., Mayou, D. & Ciuchi, S. Adv. Funct. Mater. 26, 2292–2315 (2016).

    Article  CAS  Google Scholar 

  15. Xia, Y., Cho, J. H., Lee, J., Ruden, P. P. & Frisbie, C. D. Adv. Mater. 21, 2174–2179 (2009).

    Article  CAS  Google Scholar 

  16. Yi, H. T., Chen, Y., Czelen, K. & Podzorov, V. Adv. Mater. 23, 5807–5811 (2011).

    Article  CAS  Google Scholar 

  17. Bittle, E. G., Basham, J. I., Jackson, T. N., Jurchescu, O. D. & Gundlach, D. J. Nat. Commun. 7, 10908 (2016).

    Article  CAS  Google Scholar 

  18. Okachi, T., Kashiki, T. & Ohya, K. Proc. SPIE 9568, 95680I (2015).

    Article  Google Scholar 

  19. Yi, H. T., Gartstein, Y. N. & Podzorov, V. Sci. Rep. 6, 23650 (2016).

    Article  CAS  Google Scholar 

  20. Uemura, T. et al. Adv. Mater. 28, 151–155 (2016).

    Article  CAS  Google Scholar 

  21. Nikolka, M. et al. Nat. Mater. 16, 356–362 (2017).

    Article  CAS  Google Scholar 

  22. Choi, H. H., Cho, K., Frisbie, C. D., Sirringhaus, H. & Podzorov, V. Zenodo https://doi.org/10.5281/zenodo.1050698 (2017).

  23. Ren, X. et al. Adv. Electron. Mater. 3, 1700018 (2017).

    Article  Google Scholar 

  24. Takeya, J. et al. J. Appl. Phys. 94, 5800–5804 (2003).

    Article  CAS  Google Scholar 

  25. Newman, C. R., Chesterfield, R. J., Merlo, J. A. & Frisbie, C. D. Appl. Phys. Lett. 85, 422–424 (2004).

    Article  CAS  Google Scholar 

  26. Chen, Y. et al. Phys. Chem. Chem. Phys. 14, 14142–14151 (2012).

    Article  CAS  Google Scholar 

  27. https://en.wikipedia.org/wiki/American_wire_gauge

  28. Podzorov, V., Menard, E., Rogers, J. A. & Gershenson, M. E. Phys. Rev. Lett. 95, 226601 (2005).

    Article  CAS  Google Scholar 

  29. Uemura, T. et al. Curr. Appl. Phys. 12, S87–S91 (2012).

    Article  Google Scholar 

  30. Xie, W., Wang, S., Zhang, X., Leighton, C. & Frisbie, C. D. Phys. Rev. Lett. 113, 246602 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, H., Cho, K., Frisbie, C. et al. Critical assessment of charge mobility extraction in FETs. Nature Mater 17, 2–7 (2018). https://doi.org/10.1038/nmat5035

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat5035

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing