Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dislocation nucleation facilitated by atomic segregation


Surface segregation—the enrichment of one element at the surface, relative to the bulk—is ubiquitous to multi-component materials. Using the example of a Cu–Au solid solution, we demonstrate that compositional variations induced by surface segregation are accompanied by misfit strain and the formation of dislocations in the subsurface region via a surface diffusion and trapping process. The resulting chemically ordered surface regions acts as an effective barrier that inhibits subsequent dislocation annihilation at free surfaces. Using dynamic, atomic-scale resolution electron microscopy observations and theory modelling, we show that the dislocations are highly active, and we delineate the specific atomic-scale mechanisms associated with their nucleation, glide, climb, and annihilation at elevated temperatures. These observations provide mechanistic detail of how dislocations nucleate and migrate at heterointerfaces in dissimilar-material systems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Au surface segregation in the Cu(Au) solid solution.
Figure 2: In situ TEM observation of the birth of misfit dislocations out of a coherent Cu3Au/Cu(Au) interface.
Figure 3: HRTEM characterization of the misfit dislocations and in situ TEM observations of the dislocation migration by glide and climb (at 350 °C and 1 × 10−3 torr of H2 gas flow).
Figure 4: Modelling of the near-surface dislocation behaviour.


  1. 1

    Dowben, P. A. & Miller, A. Surface Segregation Phenomena (CRC, 1990).

    Google Scholar 

  2. 2

    Rodriguez, J. Physical and chemical properties of bimetallic surfaces. Surf. Sci. Rep. 24, 223–287 (1996).

    CAS  Article  Google Scholar 

  3. 3

    Strasser, P. et al. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2, 454–460 (2010).

    CAS  Article  Google Scholar 

  4. 4

    Ozoliņš, V., Wolverton, C. & Zunger, A. Cu–Au, Ag–Au, Cu–Ag, and Ni–Au intermetallics: first-principles study of temperature-composition phase diagrams and structures. Phys. Rev. B 57, 6427–6442 (1998).

    Article  Google Scholar 

  5. 5

    Porter, D. A., Easterling, K. E. & Sherif, M. Phase Transformations in Metals and Alloys (Revised Reprint) (CRC, 2009).

    Google Scholar 

  6. 6

    Okamoto, H., Chakrabarti, D., Laughlin, D. & Massalski, T. The Au–Cu (gold–copper) system. J. Phase Equilib. 8, 454–474 (1987).

    CAS  Article  Google Scholar 

  7. 7

    Frank, F. C. & Van der Merwe, J. H. One-dimensional dislocations. II. Misfitting monolayers and oriented overgrowth. Proc. R. Soc. A 198, 216–225 (1949).

    CAS  Article  Google Scholar 

  8. 8

    Matthews, J. & Blakeslee, A. Defects in epitaxial multilayers: II. Dislocation pile-ups, threading dislocations, slip lines and cracks. J. Cryst. Growth. 29, 273–280 (1975).

    CAS  Article  Google Scholar 

  9. 9

    Dong, L., Schnitker, J., Smith, R. W. & Srolovitz, D. J. Stress relaxation and misfit dislocation nucleation in the growth of misfitting films: a molecular dynamics simulation study. J. Appl. Phys. 83, 217–227 (1998).

    CAS  Article  Google Scholar 

  10. 10

    Jesson, D., Pennycook, S., Baribeau, J.-M. & Houghton, D. Direct imaging of surface cusp evolution during strained-layer epitaxy and implications for strain relaxation. Phys. Rev. Lett. 71, 1744–1747 (1993).

    CAS  Article  Google Scholar 

  11. 11

    Gao, H. & Nix, W. D. Surface roughening of heteroepitaxial thin films. Annu. Rev. Mater. Sci. 29, 173–209 (1999).

    CAS  Article  Google Scholar 

  12. 12

    Jesson, D., Chen, K. & Pennycook, S. Kinetic pathways to strain relaxation in the Si–Ge system. MRS Bull. 21, 31–37 (1996).

    CAS  Article  Google Scholar 

  13. 13

    Jesson, D., Chen, K., Pennycook, S., Thundat, T. & Warmack, R. Crack-like sources of dislocation nucleation and multiplication in thin films. Science 268, 1161–1163 (1995).

    CAS  Article  Google Scholar 

  14. 14

    Stach, E. & Hull, R. Enhancement of dislocation velocities by stress-assisted kink nucleation at the native oxide/SiGe interface. Appl. Phys. Lett. 79, 335–337 (2001).

    CAS  Article  Google Scholar 

  15. 15

    Yang, W. & Srolovitz, D. Cracklike surface instabilities in stressed solids. Phys. Rev. Lett. 71, 1593–1596 (1993).

    CAS  Article  Google Scholar 

  16. 16

    Pichaud, B., Burle, M. & Minari, F. Selection of the glide systems activated at low stresses in copper. Philos. Mag. A 44, 689–698 (1981).

    CAS  Article  Google Scholar 

  17. 17

    Pichaud, B. & Minari, F. 〈110〉{110} slip in copper slightly deformed at room temperature. Scr. Metall. 14, 1171–1174 (1980).

    CAS  Article  Google Scholar 

  18. 18

    Hirth, J. P. & Lothe, J. Theory of Dislocations (Wiley, 1982).

    Google Scholar 

  19. 19

    Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS  Article  Google Scholar 

  20. 20

    Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    CAS  Article  Google Scholar 

  21. 21

    Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    CAS  Article  Google Scholar 

  22. 22

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  Article  Google Scholar 

  23. 23

    Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

  24. 24

    Baskes, M. Modified embedded-atom potentials for cubic materials and impurities. Phys. Rev. B 46, 2727–2742 (1992).

    CAS  Article  Google Scholar 

  25. 25

    Lee, B.-J. & Baskes, M. Second nearest-neighbor modified embedded-atom-method potential. Phys. Rev. B 62, 8564–8567 (2000).

    CAS  Article  Google Scholar 

  26. 26

    Duan, Z., Zhong, J. & Wang, G. Modeling surface segregation phenomena in the (111) surface of ordered Pt3Ti crystal. J. Chem. Phys. 133, 114701 (2010).

    Article  Google Scholar 

  27. 27

    Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964).

    Article  Google Scholar 

  28. 28

    Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).

    Article  Google Scholar 

  29. 29

    Mendelev, M., Kramer, M., Becker, C. A. & Asta, M. Analysis of semi-empirical interatomic potentials appropriate for simulation of crystalline and liquid Al and Cu. Philos. Mag. 88, 1723–1750 (2008).

    CAS  Article  Google Scholar 

  30. 30

    Mishin, Y., Mehl, M., Papaconstantopoulos, D., Voter, A. & Kress, J. Structural stability and lattice defects in copper: ab initio, tight-binding, and embedded-atom calculations. Phys. Rev. B 63, 224106 (2001).

    Article  Google Scholar 

  31. 31

    Williams, P., Mishin, Y. & Hamilton, J. An embedded-atom potential for the Cu–Ag system. Model. Simul. Mater. Sci. Eng. 14, 817–833 (2006).

    CAS  Article  Google Scholar 

Download references


This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award No. DE-SC0001135. The authors thank H. Chi and S. House for their help in specimen preparation and testing. This research used resources of the Center for Functional Nanomaterials, which is a US DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704. This work used the computational resources from the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number OCI-1053575. C.Y. and L.Q. acknowledge the computational resources and services provided by Advanced Research Computing at the University of Michigan, Ann Arbor.

Author information




G.Z. and L.Z. conceived the idea and designed the experiments. D.Z., L.Z., Q.Y., D.S. and E.A.S. performed the experiments. C.Y., Y.L., Z.L. and J.L. performed the DFT and MD simulations under the supervision of L.Q. and G.W. L.Z., G.Z., L.Q., Y.L. and C.Y. analysed the data. L.Z., G.Z., L.Q. and J.M.K.W. wrote the manuscript. G.Z. supervised the whole project. All the authors discussed the results and implications and commented on the manuscript.

Corresponding author

Correspondence to Guangwen Zhou.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4324 kb)

Supplementary Information

Supplementary movie 1 (MOV 4531 kb)

Supplementary Information

Supplementary movie 2 (MOV 1198 kb)

Supplementary Information

Supplementary movie 3 (MOV 1856 kb)

Supplementary Information

Supplementary movie 4 (MOV 1201 kb)

Supplementary Information

Supplementary movie 5 (MOV 1326 kb)

Supplementary Information

Supplementary movie 6 (MOV 4814 kb)

Supplementary Information

Supplementary movie 7 (MOV 2695 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zou, L., Yang, C., Lei, Y. et al. Dislocation nucleation facilitated by atomic segregation. Nature Mater 17, 56–63 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing