Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Chiral liquid crystal colloids

Abstract

Colloidal particles disturb the alignment of rod-like molecules of liquid crystals, giving rise to long-range interactions that minimize the free energy of distorted regions. Particle shape and topology are known to guide this self-assembly process. However, how chirality of colloidal inclusions affects these long-range interactions is unclear. Here we study the effects of distortions caused by chiral springs and helices on the colloidal self-organization in a nematic liquid crystal using laser tweezers, particle tracking and optical imaging. We show that chirality of colloidal particles interacts with the nematic elasticity to predefine chiral or racemic colloidal superstructures in nematic colloids. These findings are consistent with numerical modelling based on the minimization of Landau–de Gennes free energy. Our study uncovers the role of chirality in defining the mesoscopic order of liquid crystal colloids, suggesting that this feature may be a potential tool to modulate the global orientated self-organization of these systems.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Microsprings in a nematic liquid crystal.
Figure 2: Chirality-dictated alignment of microsprings in a nematic liquid crystal.
Figure 3: Chirality-dictated alignment of single helices in a nematic liquid crystal.
Figure 4: Chirality-dependent pair interactions of colloidal springs.
Figure 5: Chirality-dependent pair interactions of microsprings.
Figure 6: Twisting of chiral particles relative to each other.

References

  1. Chaikin, P. M. & Lubensky, T. C. Principles of Condensed Matter Physics (Cambridge Univ. Press, 2000).

    Google Scholar 

  2. Rößler, U. K., Bogdanov, A. N. & Pfleiderer, C. Spontaneous skyrmion ground states in magnetic metals. Nature 442, 797–801 (2006).

    Article  Google Scholar 

  3. Wagnière, G. H. On Chirality and the Universal Asymmetry (John Wiley, 2008).

    Google Scholar 

  4. Zerrouki, D., Baudry, J., Pine, D., Chaikin, P. & Bibette, J. Chiral colloidal clusters. Nature 455, 380–382 (2008).

    Article  CAS  Google Scholar 

  5. Janoschek, R. Chirality: From Weak Bosons to the α-Helix (Springer, 2012).

    Google Scholar 

  6. Martinez, A. et al. Mutually tangled colloidal knots and induced defect loops in nematic fields. Nat. Mater. 13, 258–263 (2014).

    Article  CAS  Google Scholar 

  7. Martinez, A., Hermosillo, L., Tasinkevych, M. & Smalyukh, I. I. Linked topological colloids in a nematic host. Proc. Natl Acad. Sci. USA 112, 4546–4551 (2015).

    Article  CAS  Google Scholar 

  8. Poulin, P., Holger, S., Lubensky, T. C. & Weitz, D. A. Novel colloidal interactions in anisotropic fluids. Science 275, 1770–1773 (1997).

    Article  CAS  Google Scholar 

  9. Stark, H. Physics of colloidal dispersions in nematic liquid crystals. Phys. Rep. 351, 387–474 (2001).

    Article  CAS  Google Scholar 

  10. Koenig, G. M. Jr, Lin, I.-H. & Abbott, N. L. Chemoresponsive assemblies of microparticles at liquid crystalline interfaces. Proc. Natl Acad. Sci. USA 107, 3998–4003 (2010).

    Article  CAS  Google Scholar 

  11. Blanc, C., Coursault, D. & Lacaze, E. Ordering nano- and microparticles assemblies with liquid crystals. Liq. Cryst. Rev. 1, 83–109 (2013).

    Article  CAS  Google Scholar 

  12. Muševič, I. Liquid Crystal Colloids (Springer, 2017).

    Book  Google Scholar 

  13. Lagerwall, J. P. F. & Scalia, G. Liquid Crystals with Nano and Microparticles (World Scientific Publishing, 2017).

    Google Scholar 

  14. Lubensky, T. C., Pettey, D., Currier, N. & Stark, H. Topological defects and interactions in nematic emulsions. Phys. Rev. E 57, 610–625 (1998).

    Article  CAS  Google Scholar 

  15. Ruhwandl, R. W. & Terentjev, E. M. Monte Carlo simulation of topological defects in the nematic liquid crystal matrix around a spherical colloid particle. Phys. Rev. E 56, 5561–5565 (1997).

    Article  CAS  Google Scholar 

  16. Senyuk, B., Puls, O., Tovkach, O., Chernyshuk, S. & Smalyukh, I. I. Hexadecapolar nematic colloids. Nat. Commun. 7, 10659 (2016).

    Article  CAS  Google Scholar 

  17. Pergamenshchik, V. M. & Uzunova, V. A. Dipolar colloids in nematostatics: tensorial structure, symmetry, different types, and their interaction. Phys. Rev. E 83, 021701 (2011).

    CAS  Google Scholar 

  18. Ognysta, U. M. et al. Square colloidal lattices and pair interaction in a binary system of quadrupolar nematic colloids. Phys. Rev. E 83, 041709 (2011).

    Article  CAS  Google Scholar 

  19. Jackson, J. D. Classical Electrodynamics (John Wiley, 1962).

    Google Scholar 

  20. Senyuk, B. et al. Topological colloids. Nature 493, 200–205 (2013).

    Article  CAS  Google Scholar 

  21. Lapointe, C. P., Mason, T. G. & Smalyukh, I. I. Shape-controlled colloidal interactions in nematic liquid crystals. Science 326, 1083–1086 (2009).

    Article  CAS  Google Scholar 

  22. Liu, Q., Senyuk, B., Tasinkevych, M. & Smalyukh, I. I. Nematic liquid crystal boojums with handles on colloidal handlebodies. Proc. Natl Acad. Sci. USA 110, 9231–9236 (2013).

    Article  CAS  Google Scholar 

  23. Hashemi, S. M. et al. Fractal nematic colloids. Nat. Commun. 8, 14026 (2017).

    Article  CAS  Google Scholar 

  24. Cavallaro, M. Jr et al. Ring around the colloid. Soft Matter 9, 9099–9102 (2013).

    Article  CAS  Google Scholar 

  25. de Gennes, P. G. & Prost, J. The Physics of Liquid Crystals 2nd edn (Oxford Univ. Press, 1993).

    Google Scholar 

  26. Mundoor, H. & Smalyukh, I. I. Mesostructured composite materials with electrically tunable upconverting properties. Small 11, 5572–5580 (2015).

    Article  CAS  Google Scholar 

  27. Mundoor, H., Senyuk, B. & Smalyukh, I. I. Triclinic nematic colloidal crystals from competing elastic and electrostatic interactions. Science 352, 69–73 (2016).

    Article  CAS  Google Scholar 

  28. Han, Y. et al. Brownian motion of an ellipsoid. Science 314, 626–630 (2006).

    Article  CAS  Google Scholar 

  29. Han, Y., Alsayed, A., Nobili, M. & Yodh, A. G. Quasi-two-dimensional diffusion of single ellipsoids: aspect ratio and confinement effects. Phys. Rev. E 80, 011403 (2009).

    Article  Google Scholar 

  30. Loudet, J. C., Hanusse, P. & Poulin, P. Stokes drag on a sphere in a nematic liquid crystal. Science 306, 1525 (2004).

    Article  CAS  Google Scholar 

  31. Stark, H. & Ventzki, D. Stokes drag of spherical particles in a nematic environment at low Ericksen numbers. Phys. Rev. E 64, 031711 (2001).

    Article  CAS  Google Scholar 

  32. Turiv, T. et al. Effect of collective molecular reorientations on Brownian motion of colloids in nematic liquid crystal. Science 342, 1351–1354 (2013).

    Article  CAS  Google Scholar 

  33. Muševič, I. Optical manipulation and self-assembly of nematic colloids: colloidal crystals and superstructures. Liq. Cryst. Today 9, 2–12 (2010).

    Article  Google Scholar 

  34. Ackerman, P. J. & Smalyukh, I. I. Diversity of knot solitons in liquid crystals manifested by linking of preimages in torons and hopfions. Phys. Rev. X 7, 011006 (2017).

    Google Scholar 

  35. Lapointe, C. P., Hopkins, S., Mason, T. G. & Smalyukh, I. I. Electrically driven multiaxis rotational dynamics of colloidal platelets in nematic liquid crystals. Phys. Rev. Lett. 105, 178301 (2010).

    Article  Google Scholar 

  36. Lee, T., Trivedi, R. P. & Smalyukh, I. I. Multimodal nonlinear optical polarizing microscopy of long-range molecular order in liquid crystals. Opt. Express 35, 3447–3449 (2010).

    CAS  Google Scholar 

  37. Chen, B. G., Ackerman, P. J., Alexander, G. P., Kamien, R. D. & Smalyukh, I. I. Generating the hopf fibration experimentally in nematic liquid crystals. Phys. Rev. Lett. 110, 237801 (2013).

    Article  Google Scholar 

  38. Trivedi, R. P., Engström, D. & Smalyukh, I. I. Optical manipulation of colloids and defect structures in anisotropic liquid crystal fluids. J. Opt. 13, 044001 (2011).

    Article  Google Scholar 

  39. Conkey, D. B., Trivedi, R. P., Pavani, S. R. P., Smalyukh, I. I. & Piestun, R. Three-dimensional parallel particle manipulation and tracking by integrating holographic optical tweezers and engineered point spread functions. Opt. Express 19, 3835–3842 (2011).

    Article  CAS  Google Scholar 

  40. Fournier, J. B. & Galatola, P. Modeling planar degenerate wetting and anchoring in nematic liquid crystals. Europhys. Lett. 72, 403–409 (2005).

    Article  CAS  Google Scholar 

  41. Tasinkevych, M., Silvestre, N. M. & Telo da Gama, M. M. Liquid crystal boojum-colloids. New J. Phys. 14, 073030 (2012).

    Article  Google Scholar 

  42. Kralj, S., Žumer, S. & Allender, D. W. Nematic-isotropic phase transition in a liquid crystal droplet. Phys. Rev. A 43, 2943–2952 (1991).

    Article  CAS  Google Scholar 

  43. Chandrasekhar, S. Liquid Crystals 2nd edn (Cambridge Univ. Press, 1992).

    Book  Google Scholar 

  44. Geuzaine, C. & Remacle, J. F. Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79, 1309–1331 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

We thank P. Davidson and T. Lubensky for discussions. We acknowledge support of the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Award ER46921, contract DE-SC0010305 with the University of Colorado Boulder, as well as partial support of the American Chemical Society Petroleum Research Fund Grant PRF 54095-ND7 (development of the instrument for particle fabrication).

Author information

Authors and Affiliations

Authors

Contributions

Y.Y., A.M., B.S. and I.I.S. conducted experimental work and analysed data. M.T. performed numerical modelling. M.T. and I.I.S. wrote the manuscript, with the input from all authors. I.I.S. conceived and designed the project.

Corresponding author

Correspondence to Ivan I. Smalyukh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1348 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yuan, Y., Martinez, A., Senyuk, B. et al. Chiral liquid crystal colloids. Nature Mater 17, 71–79 (2018). https://doi.org/10.1038/nmat5032

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat5032

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing