Article

Chiral liquid crystal colloids

Received:
Accepted:
Published online:

Abstract

Colloidal particles disturb the alignment of rod-like molecules of liquid crystals, giving rise to long-range interactions that minimize the free energy of distorted regions. Particle shape and topology are known to guide this self-assembly process. However, how chirality of colloidal inclusions affects these long-range interactions is unclear. Here we study the effects of distortions caused by chiral springs and helices on the colloidal self-organization in a nematic liquid crystal using laser tweezers, particle tracking and optical imaging. We show that chirality of colloidal particles interacts with the nematic elasticity to predefine chiral or racemic colloidal superstructures in nematic colloids. These findings are consistent with numerical modelling based on the minimization of Landau–de Gennes free energy. Our study uncovers the role of chirality in defining the mesoscopic order of liquid crystal colloids, suggesting that this feature may be a potential tool to modulate the global orientated self-organization of these systems.

  • Subscribe to Nature Materials for full access:

    $59

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    & Principles of Condensed Matter Physics (Cambridge Univ. Press, ).

  2. 2.

    , & Spontaneous skyrmion ground states in magnetic metals. Nature 442, 797–801 (2006).

  3. 3.

    On Chirality and the Universal Asymmetry (John Wiley, 2006).

  4. 4.

    , , , & Chiral colloidal clusters. Nature 455, 380–382 (2008).

  5. 5.

    Chirality: From Weak Bosons to the α-Helix (Springer, 2008).

  6. 6.

    et al. Mutually tangled colloidal knots and induced defect loops in nematic fields. Nat. Mater. 13, 258–263 (2014).

  7. 7.

    , , & Linked topological colloids in a nematic host. Proc. Natl Acad. Sci. USA 112, 4546–4551 (2015).

  8. 8.

    , , & Novel colloidal interactions in anisotropic fluids. Science 275, 1770–1773 (1997).

  9. 9.

    Physics of colloidal dispersions in nematic liquid crystals. Phys. Rep. 351, 387–474 (2001).

  10. 10.

    , & Chemoresponsive assemblies of microparticles at liquid crystalline interfaces. Proc. Natl Acad. Sci. USA 107, 3998–4003 (2010).

  11. 11.

    , & Ordering nano- and microparticles assemblies with liquid crystals. Liq. Cryst. Rev. 1, 83–109 (2013).

  12. 12.

    Liquid Crystal Colloids (Springer, 2013).

  13. 13.

    & Liquid Crystals with Nano and Microparticles (World Scientific Publishing, 2013).

  14. 14.

    , , & Topological defects and interactions in nematic emulsions. Phys. Rev. E 57, 610–625 (1998).

  15. 15.

    & Monte Carlo simulation of topological defects in the nematic liquid crystal matrix around a spherical colloid particle. Phys. Rev. E 56, 5561–5565 (1997).

  16. 16.

    , , , & Hexadecapolar nematic colloids. Nat. Commun. 7, 10659 (2016).

  17. 17.

    & Dipolar colloids in nematostatics: tensorial structure, symmetry, different types, and their interaction. Phys. Rev. E 83, 021701 (2011).

  18. 18.

    et al. Square colloidal lattices and pair interaction in a binary system of quadrupolar nematic colloids. Phys. Rev. E 83, 041709 (2011).

  19. 19.

    Classical Electrodynamics (John Wiley, 2011).

  20. 20.

    et al. Topological colloids. Nature 493, 200–205 (2013).

  21. 21.

    , & Shape-controlled colloidal interactions in nematic liquid crystals. Science 326, 1083–1086 (2009).

  22. 22.

    , , & Nematic liquid crystal boojums with handles on colloidal handlebodies. Proc. Natl Acad. Sci. USA 110, 9231–9236 (2013).

  23. 23.

    et al. Fractal nematic colloids. Nat. Commun. 8, 14026 (2017).

  24. 24.

    et al. Ring around the colloid. Soft Matter 9, 9099–9102 (2013).

  25. 25.

    & The Physics of Liquid Crystals 2nd edn (Oxford Univ. Press, 2013).

  26. 26.

    & Mesostructured composite materials with electrically tunable upconverting properties. Small 11, 5572–5580 (2015).

  27. 27.

    , & Triclinic nematic colloidal crystals from competing elastic and electrostatic interactions. Science 352, 69–73 (2016).

  28. 28.

    et al. Brownian motion of an ellipsoid. Science 314, 626–630 (2006).

  29. 29.

    , , & Quasi-two-dimensional diffusion of single ellipsoids: aspect ratio and confinement effects. Phys. Rev. E 80, 011403 (2009).

  30. 30.

    , & Stokes drag on a sphere in a nematic liquid crystal. Science 306, 1525 (2004).

  31. 31.

    & Stokes drag of spherical particles in a nematic environment at low Ericksen numbers. Phys. Rev. E 64, 031711 (2001).

  32. 32.

    et al. Effect of collective molecular reorientations on Brownian motion of colloids in nematic liquid crystal. Science 342, 1351–1354 (2013).

  33. 33.

    Optical manipulation and self-assembly of nematic colloids: colloidal crystals and superstructures. Liq. Cryst. Today 9, 2–12 (2010).

  34. 34.

    & Diversity of knot solitons in liquid crystals manifested by linking of preimages in torons and hopfions. Phys. Rev. X 7, 011006 (2017).

  35. 35.

    , , & Electrically driven multiaxis rotational dynamics of colloidal platelets in nematic liquid crystals. Phys. Rev. Lett. 105, 178301 (2010).

  36. 36.

    , & Multimodal nonlinear optical polarizing microscopy of long-range molecular order in liquid crystals. Opt. Express 35, 3447–3449 (2010).

  37. 37.

    , , , & Generating the hopf fibration experimentally in nematic liquid crystals. Phys. Rev. Lett. 110, 237801 (2013).

  38. 38.

    , & Optical manipulation of colloids and defect structures in anisotropic liquid crystal fluids. J. Opt. 13, 044001 (2011).

  39. 39.

    , , , & Three-dimensional parallel particle manipulation and tracking by integrating holographic optical tweezers and engineered point spread functions. Opt. Express 19, 3835–3842 (2011).

  40. 40.

    & Modeling planar degenerate wetting and anchoring in nematic liquid crystals. Europhys. Lett. 72, 403–409 (2005).

  41. 41.

    , & Liquid crystal boojum-colloids. New J. Phys. 14, 073030 (2012).

  42. 42.

    , & Nematic-isotropic phase transition in a liquid crystal droplet. Phys. Rev. A 43, 2943–2952 (1991).

  43. 43.

    Liquid Crystals 2nd edn (Cambridge Univ. Press, 1991).

  44. 44.

    & Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79, 1309–1331 (2009).

Download references

Acknowledgements

We thank P. Davidson and T. Lubensky for discussions. We acknowledge support of the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Award ER46921, contract DE-SC0010305 with the University of Colorado Boulder, as well as partial support of the American Chemical Society Petroleum Research Fund Grant PRF 54095-ND7 (development of the instrument for particle fabrication).

Author information

Author notes

    • Ye Yuan
    •  & Angel Martinez

    These authors contributed equally to this work.

Affiliations

  1. Department of Physics and Soft Materials Research Center, University of Colorado, Boulder, Colorado 80309, USA

    • Ye Yuan
    • , Angel Martinez
    • , Bohdan Senyuk
    •  & Ivan I. Smalyukh
  2. Max-Planck-Institut für Intelligente Systeme, Heisenbergstrasse 3, D-70569 Stuttgart, Germany

    • Mykola Tasinkevych
  3. IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany

    • Mykola Tasinkevych
  4. Centro de Física Teórica e Computacional, Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Campo Grande P-1749-016 Lisboa, Portugal

    • Mykola Tasinkevych
  5. Department of Electrical, Computer, and Energy Engineering, Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80309, USA

    • Ivan I. Smalyukh
  6. Renewable and Sustainable Energy Institute, National Renewable Energy Laboratory and University of Colorado, Boulder, Colorado 80309, USA

    • Ivan I. Smalyukh

Authors

  1. Search for Ye Yuan in:

  2. Search for Angel Martinez in:

  3. Search for Bohdan Senyuk in:

  4. Search for Mykola Tasinkevych in:

  5. Search for Ivan I. Smalyukh in:

Contributions

Y.Y., A.M., B.S. and I.I.S. conducted experimental work and analysed data. M.T. performed numerical modelling. M.T. and I.I.S. wrote the manuscript, with the input from all authors. I.I.S. conceived and designed the project.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Ivan I. Smalyukh.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information