Spontaneous exchange bias formation driven by a structural phase transition in the antiferromagnetic material

Published online:


Most of the magnetic devices in advanced electronics rely on the exchange bias effect, a magnetic interaction that couples a ferromagnetic and an antiferromagnetic material, resulting in a unidirectional displacement of the ferromagnetic hysteresis loop by an amount called the ‘exchange bias field’. Setting and optimizing exchange bias involves cooling through the Néel temperature of the antiferromagnetic material in the presence of a magnetic field. Here we demonstrate an alternative process for the generation of exchange bias. In IrMn/FeCo bilayers, a structural phase transition in the IrMn layer develops at room temperature, exchange biasing the FeCo layer as it propagates. Once the process is completed, the IrMn layer contains very large single-crystal grains, with a large density of structural defects within each grain, which are promoted by the FeCo layer. The magnetic characterization indicates that these structural defects in the antiferromagnetic layer are behind the resulting large value of the exchange bias field and its good thermal stability. This mechanism for establishing the exchange bias in such a system can contribute towards the clarification of fundamental aspects of this exchange interaction.

  • Subscribe to Nature Materials for full access:



Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.


  1. 1.

    & Exchange bias. J. Magn. Magn. Mater. 192, 203–232 (1999).

  2. 2.

    & New magnetic anisotropy. Phys. Rev. 102, 1413–1414 (1956).

  3. 3.

    , , & Antiferromagnetic spintronics. Nat. Nanotech. 11, 231–241 (2016).

  4. 4.

    et al. Exchange bias in nanostructures. Phys. Rep. 442, 65–117 (2005).

  5. 5.

    et al. Giant magnetoresistive in soft ferromagnetic multilayers. Phys. Rev. B 43, 1297–1300 (1991).

  6. 6.

    & A new spin on magnetic memories. Nat. Nanotech. 10, 187–191 (2015).

  7. 7.

    , & Correlation between antiferromagnetic interface coupling and positive exchange bias. Phys. Rev. B 61, 1315–1317 (2000).

  8. 8.

    , , & Thermal stability of IrMn and MnFe exchange-biased magnetic tunnel junctions. Appl. Phys. Lett. 76, 3097–3099 (2000).

  9. 9.

    et al. Thermally assisted reversal of exchange biasing in NiO and FeMn based systems. Appl. Phys. Lett. 72, 492–494 (1998).

  10. 10.

    , , & Control of the setting process in CoFe/IrMn exchange bias systems. J. Appl. Phys. 104, 033906 (2008).

  11. 11.

    , & Giant exchange anisotropy observed in Mn–Ir/Co–Fe bilayers containing ordered Mn3Ir phase. Appl. Phys. Lett. 85, 3812–3814 (2004).

  12. 12.

    , & A new paradigm for exchange bias in polycrystalline thin films. J. Magn. Magn. Mater. 322, 883–899 (2010).

  13. 13.

    & Metastable antiferromagnetic domain configurations in exchange biased bilayers. J. Appl. Phys. 93, 8606–8608 (2003).

  14. 14.

    & Thermally activated self-alignment of exchange coupling in NiO/NiFe bilayers. J. Appl. Phys. 91, 7748–7750 (2002).

  15. 15.

    et al. A model of the temperature dependence of exchange bias in coupled ferromagnetic/antiferromagnetic bilayers. J. Appl. Phys. 103, 07C102 (2008).

  16. 16.

    , , & Effect of the ferromagnetic layer thickness on the blocking temperature in IrMn/CoFe exchange couples. IEEE Trans. Magn. 44, 2835–2838 (2008).

  17. 17.

    et al. Local manipulation and reversal of the exchange bias field by ion irradiation in FeNi/FeMn double layers. Phys. Rev. B 63, 060409(R) (2001).

  18. 18.

    et al. Néel walls between tailored parallel-stripe domains in IrMn/CoFe exchange bias layers. J. Appl. Phys. 117, 123904 (2015).

  19. 19.

    et al. Electrical measurement of antiferromagnetic moments in exchange-coupled IrMn/NiFe stacks. Phys. Rev. Lett. 108, 017201 (2012).

  20. 20.

    et al. Room-temperature perpendicular exchange coupling and tunneling anisotropic magnetoresistance in an antiferromagnet-based tunnel junction. Phys. Rev. Lett. 109, 137201 (2012).

  21. 21.

    et al. Exchange-bias phenomenon: the role of the ferromagnetic spin structure. Phys. Rev. Lett. 114, 097202 (2015).

  22. 22.

    Kinetics of phase change. II transformation-time relations for random distribution of nuclei. J. Chem. Phys. 8, 212–224 (1940).

  23. 23.

    et al. The antiferromagnetic structures of IrMn3 and their influence on exchange-bias. Sci. Rep. 3, 2412 (2013).

  24. 24.

    , & The origin of non-linear ln(t) behaviour in the time dependence of magnetisation. J. Magn. Magn. Mater. 109, L164 (1992).

  25. 25.

    , , & Exchange bias relaxation in reverse magnetic fields. Phys. Rev. B 75, 014434 (2007).

  26. 26.

    , , , & Effects of Cu dilution in IrMn on the exchange bias of CoFe/IrMn bilayers. Phys. Rev. Lett. 99, 097206 (2007).

  27. 27.

    , & Defect and impurity effects in exchange bias systems. J. Appl. Phys. 109, 07D738 (2011).

  28. 28.

    et al. Correlation between exchange bias and pinned interfacial spins. Phys. Rev. Lett. 91, 017203 (2003).

  29. 29.

    et al. Mapping motion of antiferromagnetic interfacial uncompensated magnetic moment in exchange-biased bilayers. Sci. Rep. 5, 9183 (2015).

  30. 30.

    et al. Direct measurement of rotatable and frozen CoO spins in exchange bias system of CoO/Fe/Ag(001). Phys. Rev. Lett. 104, 217204 (2010).

  31. 31.

    et al. Atomic spin structure of antiferromagnetic domain walls. Nat. Mater. 5, 477–481 (2006).

  32. 32.

    , , & Measurement of the attempt frequency in antiferromagnets. Appl. Phys. Lett. 97, 222505 (2010).

Download references


We thank K. O’Grady for his helpful discussions. This work has been funded by the Spanish Ministerio de Economía y Competitividad through the projects MAT2014-52477-C5-1-P and MAT2014-52477-C5-3-P and by the Spanish Consejo Social of the Universidad Politécnica de Madrid through the scholarship ‘Ayuda del Consejo Social para el Fomento de la formación y la Internacionalización de Doctorandos’, awarded for a three months internship at the University of York. V.K.L. thanks the funding support by EPSRC grant EP/K03278X/1. J.C. and J.L.F.C. thank support by MINECO through Projects FIS2016-78591-C3-1-R and SEV-2016-0686 and by Comunidad de Madrid through Project S2013/MIT-2850.

Author information


  1. Instituto de Sistemas Optoelectrónicos y Microtecnología-ISOM. Universidad Politécnica de Madrid, Avenida Complutense 30, 28040 Madrid, Spain

    • A. Migliorini
    • , C. Aroca
    •  & J. L. Prieto
  2. Department of Physics, University of York, York YO10 5DD, UK

    • B. Kuerbanjiang
    • , T. Huminiuc
    • , G. Vallejo-Fernández
    •  & V. K. Lazarov
  3. SuperSTEM, STFC Daresbury Laboratories, Keckwick Lane, Warrington WA4 4AD, UK

    • D. Kepaptsoglou
  4. IMN-Instituto de Micro y Nanotecnología, (CNM-CSIC), Isaac Newton 8, 28760 Tres Cantos, Madrid, Spain

    • M. Muñoz
  5. IMDEA-Nanoscience, c/ Faraday, 9 Campus de Cantoblanco, 28049 Madrid, Spain

    • J. L. F. Cuñado
    •  & J. Camarero
  6. DFMC and Instituto “Nicolás Cabrera”, Universidad Autónoma de Madrid, 28049 Madrid, Spain

    • J. L. F. Cuñado
    •  & J. Camarero
  7. Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain

    • J. Camarero


  1. Search for A. Migliorini in:

  2. Search for B. Kuerbanjiang in:

  3. Search for T. Huminiuc in:

  4. Search for D. Kepaptsoglou in:

  5. Search for M. Muñoz in:

  6. Search for J. L. F. Cuñado in:

  7. Search for J. Camarero in:

  8. Search for C. Aroca in:

  9. Search for G. Vallejo-Fernández in:

  10. Search for V. K. Lazarov in:

  11. Search for J. L. Prieto in:


A.M. deposited the samples and performed (or was strongly involved) in most of the experimental characterization. T.H. performed some of the crystallization experiments observed using electron microscopy. M.M. designed some of the experimental set-ups used for characterizations. J.L.F.C. and J.C. provided expertise and performed Kerr microscopy with A.M. C.A. was the first to suggest that a phase transition in the IrMn was probably behind the unusual behaviour of the samples. G.V.-F. helped with the magnetic characterization following the York protocol and performed the fitting displayed in Fig. 4d. V.K.L. and B.K. performed the TEM characterization with some of the specimens measured by D.K. J.L.P. directed the research and designed the sputtering system used for the deposition of the samples. J.L.P. wrote the manuscript with inputs from all the authors.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to J. L. Prieto.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information


  1. 1.

    Supplementary Information

    Supplementary Movie 1

  2. 2.

    Supplementary Information

    Supplementary Movie 2

  3. 3.

    Supplementary Information

    Supplementary Movie 3