Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Temporary formation of highly conducting domain walls for non-destructive read-out of ferroelectric domain-wall resistance switching memories

Abstract

Erasable conductive domain walls in insulating ferroelectric thin films can be used for non-destructive electrical read-out of the polarization states in ferroelectric memories. Still, the domain-wall currents extracted by these devices have not yet reached the intensity and stability required to drive read-out circuits operating at high speeds. This study demonstrated non-destructive read-out of digital data stored using specific domain-wall configurations in epitaxial BiFeO3 thin films formed in mesa-geometry structures. Partially switched domains, which enable the formation of conductive walls during the read operation, spontaneously retract when the read voltage is removed, reducing the accumulation of mobile defects at the domain walls and potentially improving the device stability. Three-terminal memory devices produced 14 nA read currents at an operating voltage of 5 V, and operated up to T = 85 °C. The gap length can also be smaller than the film thickness, allowing the realization of ferroelectric memories with device dimensions far below 100 nm.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Creation of charged walls.
Figure 2: ‘On’ currents of 35-nm-thick nanodevices.
Figure 3: Domain switching in the 35-nm-thick nanodevices.
Figure 4: Wall currents for 120-nm-thick nanodevices and direct proof of these wall currents using scanning probe techniques.
Figure 5: Read and write schemes for three-terminal BFO memories.

References

  1. Sharma, P. et al. Nonvolatile ferroelectric domain wall memory. Sci. Adv. 3, e1700512 (2017).

    Article  Google Scholar 

  2. Sharma, P., McQuaid, R. G. P., McGilly, L. J., Gregg, J. M. & Gruverman, A. Nanoscale dynamics of superdomain boundaries in single-crystal BaTiO3 lamellae. Adv. Mater. 25, 1323–1330 (2013).

    Article  CAS  Google Scholar 

  3. Shimojo, Y. et al. High-density and high-speed 128Mb chain FeRAMTM with SDRAM-compatible DDR2 interface. Symp. VLSI Tech. Dig. 218–219 (Japan Society of Applied Physics, 2009).

    Google Scholar 

  4. Kohlstedt, H. et al. Current status and challenges of ferroelectric memory devices. Microelectron. Eng. 80, 296–304 (2005).

    Article  CAS  Google Scholar 

  5. Rana, D. S. et al. Understanding the nature of ultrafast polarization dynamics of ferroelectric memory in the multiferroic BiFeO3 . Adv. Mater. 21, 2881–2885 (2009).

    Article  CAS  Google Scholar 

  6. Junquera, J. & Ghosez, P. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 422, 506–509 (2003).

    Article  CAS  Google Scholar 

  7. Fong, D. D. et al. Ferroelectricity in ultrathin perovskite films. Science 304, 1650–1653 (2004).

    Article  CAS  Google Scholar 

  8. Ko, H. et al. High-resolution field effect sensing of ferroelectric charges. Nano Lett. 11, 1428–1433 (2011).

    Article  CAS  Google Scholar 

  9. Hong, S. & Kim, Y. in Emerging Non-volatile Memories (eds Hong, S., Auciello, O. & Wouters, D.) (Springer, 2014).

    Book  Google Scholar 

  10. Cho, Y. et al. Terabit inch2 ferroelectric data storage using scanning nonlinear dielectric microscopy nanodomain engineering system. Nanotechnology 14, 637–642 (2003).

    Article  CAS  Google Scholar 

  11. Forrester, M. G. et al. Charge-based scanning probe readback of nanometer-scale ferroelectric domain patterns at megahertz rates. Nanotechnology 20, 225501 (2009).

    Article  Google Scholar 

  12. Hong, S. et al. Charge gradient microscopy. Proc. Natl Acad. Sci. USA 111, 6566–6569 (2014).

    Article  CAS  Google Scholar 

  13. Heck, J. et al. Ultra-high density MEMS probe memory device. Microelectron. Eng. 87, 1198–1203 (2010).

    Article  CAS  Google Scholar 

  14. Wu, W., Horibe, Y., Lee, N., Cheong, S.-W. & Guest, J. R. Conduction of topologically protected charged ferroelectric domain walls. Phys. Rev. Lett. 108, 077203 (2012).

    Article  Google Scholar 

  15. Schröder, M. et al. Conducting domain walls in lithium niobate single crystals. Adv. Funct. Mater. 22, 3936–3944 (2012).

    Article  Google Scholar 

  16. Meier, D. et al. Anisotropic conductance at improper ferroelectric domain walls. Nat. Mater. 11, 284–288 (2012).

    Article  CAS  Google Scholar 

  17. Sluka, T., Tagantsev, A. K., Bednyakov, P. & Setter, N. Free-electron gas at charged domain walls in insulating BaTiO3 . Nat. Commun. 4, 1808 (2013).

    Article  Google Scholar 

  18. Gureev, M. Y., Mokry, P., Tagantsev, A. K. & Setter, N. Ferroelectric charged domain walls in an applied electric field. Phys. Rev. B 86, 104104 (2012).

    Article  Google Scholar 

  19. Crassous, A., Sluka, T., Tagantsev, A. K. & Setter, N. Polarization charge as a reconfigurable quasi-dopant in ferroelectric thin films. Nat. Nanotech. 10, 614–618 (2015).

    Article  CAS  Google Scholar 

  20. Farokhipoor, S. & Noheda, B. Conduction through 71° domain walls in BiFeO3 thin films. Phys. Rev. Lett. 107, 127601 (2011).

    Article  CAS  Google Scholar 

  21. Seidel, J. et al. Conduction at domain walls in oxide multiferroics. Nat. Mater. 8, 229–234 (2009).

    Article  CAS  Google Scholar 

  22. Lubk, A. et al. Evidence of sharp and diffuse domain walls in BiFeO3 by means of unit-cell-wise strain and polarization maps obtained with high resolution scanning transmission electron microscopy. Phys. Rev. Lett. 109, 047601 (2012).

    Article  CAS  Google Scholar 

  23. Mundy, J. A. et al. Functional electronic inversion layers at ferroelectric domain walls. Nat. Mater. 16, 622–627 (2017).

    Article  CAS  Google Scholar 

  24. Johnson, J. B. Thermal agitation of electricity in conductors. Phys. Rev. 32, 97–109 (1928).

    Article  CAS  Google Scholar 

  25. Nyquist, H. Thermal agitation of electric charge in conductors. Phys. Rev. 32, 110–113 (1928).

    Article  CAS  Google Scholar 

  26. Li, L. et al. Giant resistive switching via control of ferroelectric charged domain walls. Adv. Mater. 28, 6574–6580 (2016).

    Article  CAS  Google Scholar 

  27. Heron, J. T. et al. Deterministic switching of ferromagnetism at room temperature using an electric field. Nature 516, 370–373 (2014).

    Article  CAS  Google Scholar 

  28. Guyonnet, J., Gaponenko, I., Gariglio, S. & Paruch, P. Conduction at domain walls in insulating Pb(Zr0.2Ti0.8)O3 thin films. Adv. Mater. 23, 5377–5382 (2011).

    Article  CAS  Google Scholar 

  29. Chu, Y.-H. et al. Domain control in multiferroic BiFeO3 through substrate vicinality. Adv. Mater. 19, 2662–2666 (2007).

    Article  CAS  Google Scholar 

  30. Park, M., No, K. & Hong, S. Visualization and manipulation of meta-stable polarization variants in multiferroic materials. AIP Adv. 3, 214–217 (2013).

    Article  Google Scholar 

  31. Nelson, C. T. et al. Domain dynamics during ferroelectric switching. Science 334, 968–971 (2011).

    Article  CAS  Google Scholar 

  32. Shin, Y.-H., Grinberg, I., Chen, I.-W. & Rappe, A. M. Nucleation and growth mechanism of ferroelectric domain-wall motion. Nature 449, 881–884 (2007).

    Article  CAS  Google Scholar 

  33. Kim, K. M. et al. A detailed understanding of the electronic bipolar resistance switching behavior in Pt/TiO2/Pt structure. Nanotechnology 22, 254010 (2011).

    Article  Google Scholar 

  34. Rojac, T. et al. Domain-wall conduction in ferroelectric BiFeO3 controlled by accumulation of charged defects. Nat. Mater. 16, 322–328 (2017).

    Article  CAS  Google Scholar 

  35. So, Y. W., Kim, D. J., Noh, T. W., Yoon, J.-G. & Song, T. K. Polarization switching kinetics of epitaxial Pb(Zr0.4Ti0.6)O3 thin films. Appl. Phys. Lett. 86, 092905 (2005).

    Article  Google Scholar 

  36. Merz, W. J. Domain formation and domain wall motions in ferroelectric BaTiO3 single crystals. Phys. Rev. 95, 690–698 (1954).

    Article  CAS  Google Scholar 

  37. Shelke, V. et al. Ferroelectric domain scaling and switching in ultrathin BiFeO3 films deposited on vicinal substrates. New J. Phys. 14, 053040 (2012).

    Article  Google Scholar 

  38. Gao, P. et al. Direct observations of retention failure in ferroelectric memories. Adv. Mater. 24, 1106–1110 (2012).

    Article  CAS  Google Scholar 

  39. Maksymovych, P. et al. Dynamic conductivity of ferroelectric domain walls in BiFeO3 . Nano Lett. 11, 1906–1912 (2011).

    Article  CAS  Google Scholar 

  40. Stolichnov, I. et al. Persistent conductive footprints of 109° domain walls in bismuth ferrite films. Appl. Phys. Lett. 104, 132902 (2014).

    Article  Google Scholar 

  41. Linn, E., Rosezin, R., Kügele, C. & Waser, R. Complementary resistive switches for passive nanocrossbar memories. Nat. Mater. 9, 403–406 (2010).

    Article  CAS  Google Scholar 

  42. Schroeder, H., Zhirnov, V. V., Cavin, R. K. & Waser, R. Voltage-time dilemma of pure electronic mechanisms in resistive switching memory cells. J. Appl. Phys. 107, 054517 (2010).

    Article  Google Scholar 

  43. Kim, K. M., Jeong, D. S. & Hwang, C. S. Nanofilamentary resistive switching in binary oxide system; a review on the present status and outlook. Nanotechnology 22, 254002 (2011).

    Article  Google Scholar 

  44. Baek, S. H. et al. Ferroelastic switching for nanoscale non-volatile magnetoelectric devices. Nat. Mater. 9, 309–314 (2010).

    Article  CAS  Google Scholar 

  45. Lee, D. et al. Polarity control of carrier injection at ferroelectric/metal interfaces for electrically switchable diode and photovoltaic effects. Phys. Rev. B 84, 125305 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Basic Research Program of China (grant numbers 2014CB921004, 2014CB921002, and 2012CB921702) and the National Natural Science Foundation of China (grant numbers 61674044 and 51332001). J.F.S. acknowledges the financial support of the Strategic Priority Research Program of the Chinese Academy of Sciences (grant number XDB07030200). C.S.H. acknowledges the support of the Global Research Laboratory Program (grant number NRF-2012K1A1A2040157) of the National Research Foundation of the Republic of Korea. The authors would like to thank Y. F. Chen, L. Gu, D. P. Wu and X. Q. Wang for providing technical support in performing EBL, TEM, COMSOL simulations and XRD analysis. We thank D. MacDonald, MSc, from L. Bianji, Edanz Group China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

A.Q.J. conceived the idea for the work and performed the electrical characterization and part of the PFM characterization, and, in conjunction with D.W.Z., C.S.H. and J.F.S., directed the study and analysed the results. J.J. performed the BFO nanodevice fabrication process. Z.L.B. grew the films, measured the XRD patterns, and performed the CAFM measurements. Z.H.C. performed the finite element simulations. L.H. performed part of the PFM measurements, while J.A.S. fabricated the TEM samples, and Q.H.Z. performed the TEM observations. J.J. and Z.L.B. contributed equally to this work. All authors discussed the results. A.Q.J. and C.S.H. wrote the manuscript.

Corresponding author

Correspondence to An Quan Jiang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2027 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, J., Bai, Z., Chen, Z. et al. Temporary formation of highly conducting domain walls for non-destructive read-out of ferroelectric domain-wall resistance switching memories. Nature Mater 17, 49–56 (2018). https://doi.org/10.1038/nmat5028

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat5028

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing