Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Beating the thermodynamic limit with photo-activation of n-doping in organic semiconductors

A Corrigendum to this article was published on 23 January 2018

This article has been updated

Abstract

Chemical doping of organic semiconductors using molecular dopants plays a key role in the fabrication of efficient organic electronic devices. Although a variety of stable molecular p-dopants have been developed and successfully deployed in devices in the past decade, air-stable molecular n-dopants suitable for materials with low electron affinity are still elusive. Here we demonstrate that photo-activation of a cleavable air-stable dimeric dopant can result in kinetically stable and efficient n-doping of host semiconductors, whose reduction potentials are beyond the thermodynamic reach of the dimer’s effective reducing strength. Electron-transport layers doped in this manner are used to fabricate high-efficiency organic light-emitting diodes. Our strategy thus enables a new paradigm for using air-stable molecular dopants to improve conductivity in, and provide ohmic contacts to, organic semiconductors with very low electron affinity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular structure and electrochemical redox potentials of the host and the dopant, and optical absorption spectra of UV-activated doped film.
Figure 2: Evolution of work function and conductivity of doped POPy2 films under photo-activation.
Figure 3: Dominant paths for the photo-assisted doping for the dimer/host system.
Figure 4: Evolution of charge-transfer state in doped POPy2 films observed via EQEPV measurements.
Figure 5: Structure, energy diagram and characterization of a high-efficiency OLED.

Similar content being viewed by others

Change history

  • 15 December 2017

    In the version of this Article originally published, the source of 'ZADN' stated in the Methods should have read 'obtained as free research samples from Guangzhou ChinaRay Optoelectronic Materials' instead of 'China-Ray'. This has now been corrected in the online versions of the Article.

References

  1. Lüssem, B., Riede, M. & Leo, K. Doping of organic semiconductors. Phys. Status Solidi A 210, 9–43 (2013).

    Article  Google Scholar 

  2. Salzmann, I. & Heimel, G. Toward a comprehensive understanding of molecular doping organic semiconductors (review). J. Electron Spectrosc. Relat. Phenom. 204, 208–222 (2015).

    Article  CAS  Google Scholar 

  3. Reineke, S. et al. White organic light-emitting diodes with fluorescent tube efficiency. Nature 459, 234–239 (2009).

    Article  CAS  Google Scholar 

  4. Murawski, C., Fuchs, C., Hofmann, S., Leo, K. & Gather, M. C. Alternative p-doped hole transport material for low operating voltage and high efficiency organic light-emitting diodes. Appl. Phys. Lett. 105, 113303 (2014).

    Article  Google Scholar 

  5. Selzer, F. et al. Improved organic p-i-n type solar cells with n-doped fluorinated hexaazatrinaphthylene derivatives HATNA-F6 and HATNA-F12 as transparent electron transport material. J. Appl. Phys. 115, 54515 (2014).

    Article  Google Scholar 

  6. Lei, X., Zhang, F., Song, T. & Sun, B. p-type doping effect on the performance of organic-inorganic hybrid solar cells. Appl. Phys. Lett. 99, 233305 (2011).

    Article  Google Scholar 

  7. Lüssem, B. et al. Doped organic transistors operating in the inversion and depletion regime. Nat. Commun. 4, 2775 (2013).

    Article  Google Scholar 

  8. Ma, L. et al. High performance polythiophene thin-film transistors doped with very small amounts of an electron acceptor. Appl. Phys. Lett. 92, 63310 (2008).

    Article  Google Scholar 

  9. Naab, B. D. et al. High mobility N-type transistors based on solution- sheared doped 6,13-Bis(triisopropylsilylethynyl)pentacene thin films. Adv. Mater. 25, 4663–4667 (2013).

    Article  CAS  Google Scholar 

  10. Olthof, S. et al. Passivation of trap states in unpurified and purified C60 and the influence on organic field-effect transistor performance. Appl. Phys. Lett. 101, 253303 (2012).

    Article  Google Scholar 

  11. Oh, J. H., Wei, P. & Bao, Z. Molecular n-type doping for air-stable electron transport in vacuum-processed n-channel organic transistors. Appl. Phys. Lett. 97, 243305 (2010).

    Article  Google Scholar 

  12. Tang, C. G. et al. Doped polymer semiconductors with ultrahigh and ultralow work functions for ohmic contacts. Nature 539, 536–540 (2016).

    Article  CAS  Google Scholar 

  13. Kulkarni, A. P., Tonzola, C. J., Babel, A. & Jenekhe, S. A. Electron transport materials for organic light-emitting diodes. Chem. Mater. 16, 4556–4573 (2004).

    Article  CAS  Google Scholar 

  14. Chan, C. K., Kim, E. G., Brédas, J.-L. & Kahn, A. Molecular n-type doping of 1,4,5,8-naphthalene tetracarboxylic dianhydride by pyronin B studied using direct and inverse photoelectron spectroscopies. Adv. Funct. Mater. 16, 831–837 (2006).

    Article  CAS  Google Scholar 

  15. Werner, A. G. et al. Pyronin B as a donor for n-type doping of organic thin films. Appl. Phys. Lett. 82, 4495–4497 (2003).

    Article  CAS  Google Scholar 

  16. Li, F., Werner, A., Pfeiffer, M., Leo, K. & Liu, X. Leuco crystal violet as a dopant for n-doping of organic thin films of fullerene C60 . J. Phys. Chem. B 108, 17076–17082 (2004).

    Article  CAS  Google Scholar 

  17. Li, F. et al. Acridine orange base as a dopant for n doping of C60 thin films. J. Appl. Phys. 100, 1–9 (2006).

    Article  Google Scholar 

  18. Wei, P. et al. 2-(2-Methoxyphenyl)-1,3-dimethyl-1H-benzoimidazol-3-ium iodide as a new air-stable n-type dopant for vacuum-processed organic semiconductor thin films. J. Am. Chem. Soc. 134, 3999–4002 (2012).

    Article  CAS  Google Scholar 

  19. Wei, P., Oh, J. H., Dong, G. & Bao, Z. Use of a 1H-benzoimidazole derivative as an n-type dopant and to enable air-stable solution-processed n-channel organic thin-film transistors. J. Am. Chem. Soc. 132, 8852–8853 (2010).

    Article  CAS  Google Scholar 

  20. Schlitz, R. A. et al. Solubility-limited extrinsic n-type doping of a high electron mobility polymer for thermoelectric applications. Adv. Mater. 26, 2825–2830 (2014).

    Article  CAS  Google Scholar 

  21. Naab, B. D. et al. Effective solution- and vacuum-processed n-doping by dimers of benzimidazoline radicals. Adv. Mater. 26, 4268–4272 (2014).

    Article  CAS  Google Scholar 

  22. Rossbauer, S., Müller, C. & Anthopoulos, T. D. Comparative study of the n-type doping efficiency in solution-processed fullerenes and fullerene derivatives. Adv. Funct. Mater. 24, 7116–7124 (2014).

    CAS  Google Scholar 

  23. Naab, B. D. et al. Mechanistic study on the solution-phase n-doping of 1,3-dimethyl-2-aryl-2,3-dihydro-1H-benzoimidazole derivatives. J. Am. Chem. Soc. 135, 15018–15025 (2013).

    Article  CAS  Google Scholar 

  24. Zhang, Y., de Boer, B. & Blom, P. W. M. Trap-free electron transport in poly(p-phenylene vinylene) by deactivation of traps with n-type doping. Phys. Rev. B 81, 85201 (2010).

    Article  Google Scholar 

  25. Weber, C. D., Bradley, C. & Lonergan, M. C. Solution phase n-doping of C60 and PCBM using tetrabutylammonium fluoride. J. Mater. Chem. A 2, 303–307 (2014).

    Article  CAS  Google Scholar 

  26. Guo, S. et al. n-doping of organic electronic materials using air-stable organometallics: a mechanistic study of reduction by dimeric sandwich compounds. Chem. Eur. J. 18, 14760–14772 (2012).

    Article  CAS  Google Scholar 

  27. Guo, S. et al. n-doping of organic electronic materials using air-stable organometallics. Adv. Mater. 24, 699–703 (2012).

    Article  CAS  Google Scholar 

  28. Qi, Y. et al. Solution doping of organic semiconductors using air-stable n-dopants. Appl. Phys. Lett. 100, 83305 (2012).

    Article  Google Scholar 

  29. Olthof, S. et al. Ultralow doping in organic semiconductors: evidence of trap filling. Phys. Rev. Lett. 109, 176601 (2012).

    Article  Google Scholar 

  30. Higgins, A., Mohapatra, S. K., Barlow, S., Marder, S. R. & Kahn, A. Dopant controlled trap-filling and conductivity enhancement in an electron-transport polymer. Appl. Phys. Lett. 106, 163301 (2015).

    Article  Google Scholar 

  31. Mohapatra, S. K. et al. Dimers of nineteen-electron sandwich compounds: crystal and electronic structures, and comparison of reducing strengths. Chem. Eur. J. 20, 15385–15394 (2014).

    Article  CAS  Google Scholar 

  32. Walzer, K., Maennig, B., Pfeiffer, M. & Leo, K. Highly efficient organic devices based on electrically doped transport layers. Chem. Rev. 107, 1233–1271 (2007).

    Article  CAS  Google Scholar 

  33. Oyamada, T. et al. Extremely low-voltage driving of organic light-emitting diodes with a Cs-doped phenyldipyrenylphosphine oxide layer as an electron-injection layer. Appl. Phys. Lett. 86, 33503 (2005).

    Article  Google Scholar 

  34. Matsushima, T. & Adachi, C. High-current injection and transport on order of kA/cm2 in organic light-emitting diodes having mixed organic/organic heterojunction interfaces. Jpn. J. Appl. Phys. 46, L861–L863 (2007).

    Article  CAS  Google Scholar 

  35. Matsushima, T. & Adachi, C. Suppression of exciton annihilation at high current densities in organic light-emitting diode resulting from energy-level alignments of carrier transport layers. Appl. Phys. Lett. 92, 63306 (2008).

    Article  Google Scholar 

  36. Yoshida, H. & Yoshizaki, K. Electron affinities of organic materials used for organic light-emitting diodes: a low-energy inverse photoemission study. Org. Electron. 20, 24–30 (2015).

    Article  CAS  Google Scholar 

  37. Choi, J. M. & Lee, J. Y. Triplet emitter doped exciton harvesting layer for improved efficiency and long lifetime in blue phosphorescent organic light-emitting diodes. Synth. Met. 220, 573–577 (2016).

    Article  CAS  Google Scholar 

  38. Hiszpanski, A. M. et al. Halogenation of a nonplanar molecular semiconductor to tune energy levels and bandgaps for electron transport. Chem. Mater. 27, 1892–1900 (2015).

    Article  CAS  Google Scholar 

  39. Davy, N. C. et al. Contorted hexabenzocoronenes with extended heterocyclic moieties improve visible-light absorption and performance in organic solar cells. Chem. Mater. 28, 673–681 (2016).

    Article  CAS  Google Scholar 

  40. Pommerehne, J. et al. Efficient two layer LEDs on a polymer blend basis. Adv. Mater. 7, 551–554 (1995).

    Article  CAS  Google Scholar 

  41. Tao, Y. T., Balasubramaniam, E., Danel, A. & Tomasik, P. Dipyrazolopyridine derivatives as bright blue electroluminescent materials. Appl. Phys. Lett. 77, 933–935 (2000).

    Article  CAS  Google Scholar 

  42. Swensen, J. S. et al. Improved efficiency in blue phosphorescent organic light-emitting devices using host materials of lower triplet energy than the phosphorescent blue emitter. Adv. Funct. Mater. 21, 3250–3258 (2011).

    Article  CAS  Google Scholar 

  43. Wu, C. I., Hirose, Y., Sirringhaus, H. & Kahn, A. Electron-hole interaction energy in the organic molecular semiconductor PTCDA. Chem. Phys. Lett. 272, 43–47 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.K., X.L. and F.Z. acknowledge funding for this work from the National Science Foundation under grants DMR-1506097. Work in Berlin was supported by the Sfb951 (DFG) and the Helmholtz Energy-Alliance ‘Hybrid Photovoltaics’. B.P.R., M.A.F., and K.M.L. acknowledge funding for this work from the Department of Energy EERE SSL Program under Award #DE-EE0006672 and the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award #DE-SC0012458. Work at the Georgia Institute of Technology was supported by the National Science Foundation under grants DMR-1305247. We thank E. Longhi for synthetic assistance, E. List-Kratochvil for stimulating discussions about optical interference phenomena during UV/Vis measurements, G. Ligorio for performing PL measurements in Berlin, and A. Zykov, P. Schäfer and S. Kowarik for performing XRD measurements.

Author information

Authors and Affiliations

Authors

Contributions

X.L., B.W., K.M., A.K., N.K., S.R.M. and S.B. initialized this series of experiments. K.M., S.B. and S.R.M. synthesized the dopant molecules. X.L., B.W., A.K. and N.K. designed the work function and conductivity experiments, prepared the films, and carried out Kelvin probe, IV, AFM, UPS, XPS and IPES measurements. B.W. and N.K. conducted optical absorption spectroscopy. K.M.L. and B.P.R. performed part of the PL experiments in Princeton. X.L., K.M.L., M.A.F., B.P.R. and A.K. designed and performed EQEPV and OLED measurements. F.Z., K.M.L., X.L. and A.K. designed and fabricated samples for SIMS and RBS. All authors discussed the results and contributed to the manuscript.

Corresponding author

Correspondence to Antoine Kahn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1034 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, X., Wegner, B., Lee, K. et al. Beating the thermodynamic limit with photo-activation of n-doping in organic semiconductors. Nature Mater 16, 1209–1215 (2017). https://doi.org/10.1038/nmat5027

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat5027

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing