Additively manufactured hierarchical stainless steels with high strength and ductility


Many traditional approaches for strengthening steels typically come at the expense of useful ductility, a dilemma known as strength–ductility trade-off. New metallurgical processing might offer the possibility of overcoming this. Here we report that austenitic 316L stainless steels additively manufactured via a laser powder-bed-fusion technique exhibit a combination of yield strength and tensile ductility that surpasses that of conventional 316L steels. High strength is attributed to solidification-enabled cellular structures, low-angle grain boundaries, and dislocations formed during manufacturing, while high uniform elongation correlates to a steady and progressive work-hardening mechanism regulated by a hierarchically heterogeneous microstructure, with length scales spanning nearly six orders of magnitude. In addition, solute segregation along cellular walls and low-angle grain boundaries can enhance dislocation pinning and promote twinning. This work demonstrates the potential of additive manufacturing to create alloys with unique microstructures and high performance for structural applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Typical microstructure of a laser powder-bed-fusion (L-PBF) produced 316L stainless steel (SS).
Figure 2: Tensile properties of L-PBF 316L stainless steels (SS).
Figure 3: Synchrotron X-ray diffraction (SXRD) measurements during tensile deformation of an L-PBF 316L SS.
Figure 4: Deformation structures of an L-PBF 316L SS after different levels of strain.


  1. 1

    Li, Z., Pradeep, K. G., Deng, Y., Raabe, D. & Tasan, C. C. Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature 534, 227–230 (2016).

    Article  CAS  Google Scholar 

  2. 2

    Kimura, Y., Inoue, T., Yin, F. & Tsuzaki, K. Inverse temperature dependence of toughness in an ultrafine grain-structure steel. Science 320, 1057–1060 (2008).

    Article  CAS  Google Scholar 

  3. 3

    Yamamoto, Y. et al. Creep-resistant, Al2O3-forming austenitic stainless steels. Science 316, 433–436 (2007).

    Article  CAS  Google Scholar 

  4. 4

    Eoyama, M. et al. Bone-like crack resistance in hierarchical metastable nanolaminate steels. Science 355, 1055–1057 (2017).

    Article  CAS  Google Scholar 

  5. 5

    Gludovatz, B. et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153–1158 (2014).

    Article  CAS  Google Scholar 

  6. 6

    Hofmann, D. C. et al. Designing metallic glass matrix composites with high toughness and tensile ductility. Nature 451, 1085–1089 (2008).

    Article  CAS  Google Scholar 

  7. 7

    Kim, S.-H., Kim, H. & Kim, N. J. Brittle intermetallic compound makes ultrastrong low-density steel with large ductility. Nature 518, 77–79 (2015).

    Article  CAS  Google Scholar 

  8. 8

    Jiang, S. et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation. Nature 544, 460–464 (2017).

    Article  CAS  Google Scholar 

  9. 9

    Wang, Y. M., Chen, M. W., Zhou, F. H. & Ma, E. High tensile ductility in a nanostructured metal. Nature 419, 912–915 (2002).

    Article  CAS  Google Scholar 

  10. 10

    Fang, T. H., Li, W. L., Tao, N. R. & Lu, K. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science 331, 1587–1590 (2011).

    Article  CAS  Google Scholar 

  11. 11

    Yan, F. K., Liu, G. Z., Tao, N. R. & Lu, K. Strength and ductility of 316L austenitic stainless steel strengthened by nano-scale twin bundles. Acta Mater. 60, 1059–1071 (2012).

    Article  CAS  Google Scholar 

  12. 12

    Wei, Y. et al. Evading the strength- ductility trade-off dilemma in steel through gradient hierarchical nanotwins. Nat. Commun. 5, 3580 (2014).

    Article  CAS  Google Scholar 

  13. 13

    Wu, X. L. et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility. Proc. Natl Acad. Sci. USA 112, 14501–14505 (2015).

    Article  CAS  Google Scholar 

  14. 14

    Herzog, D., Seyda, V., Wycisk, E. & Emmelmann, C. Additive manufacturing of metals. Acta Mater. 117, 371–392 (2016).

    Article  CAS  Google Scholar 

  15. 15

    MacDonald, E. & Wicker, R. Multiprocess 3D printing for increasing component functionality. Science 353, 1512 (2016).

    Article  CAS  Google Scholar 

  16. 16

    Khairallah, S. A., Anderson, A. T., Rubenchik, A. & King, W. E. Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater. 108, 36–45 (2016).

    Article  CAS  Google Scholar 

  17. 17

    Kamath, C., El-dasher, B., Gallegos, G. F., King, W. E. & Sisto, A. Density of additively-manufactured, 316L SS parts using laser powder-bed fusion at powers up to 400 W. Int. J. Adv. Manuf. Technol. 74, 65–78 (2014).

    Article  Google Scholar 

  18. 18

    Trelewicz, J. R., Halada, G. P., Donaldson, O. K. & Manogharan, G. Microstructure and corrosion resistance of laser additively manufactured 316L stainless steel. J. Miner. Metals Mater. Soc. 68, 850–859 (2016).

    Article  CAS  Google Scholar 

  19. 19

    Prashanth, K. G. & Eckert, J. Formation of metastable cellular microstructures in selective laser melted alloys. J. Alloys Compd 707, 27–34 (2017).

    Article  CAS  Google Scholar 

  20. 20

    Ion, J. C., Shercliff, H. R. & Ashby, M. F. Diagrams for laser materials processing. Acta Metall. Mater. 40, 1539–1551 (1992).

    Article  CAS  Google Scholar 

  21. 21

    Thomas, M., Baxter, G. J. & Todd, I. Normalised model-based processing diagrams for additive layer manufacture of engineering alloys. Acta Mater. 108, 26–35 (2016).

    Article  CAS  Google Scholar 

  22. 22

    Rawers, J., Croydon, F., Krabbe, R. & Duttlinger, N. Tensile characteristics of nitrogen enhanced powder injection moulded 316L stainless steel. Powder Metall. 39, 125–129 (1996).

    Article  CAS  Google Scholar 

  23. 23

    Zieliński, W., Abduluyahed, A. A. & Kurzydłowski, K. J. TEM studies of dislocation substructure in 316 austenitic stainless steel strained after annealing in various environments. Mater. Sci. Eng. A 249, 91–96 (1998).

    Article  Google Scholar 

  24. 24

    Nakanishi, T., Tsuchiyama, T., Mitsuyasu, H., Iwamoto, Y. & Takaki, S. Effect of partial solution nitriding on mechanical properties and corrosion resistance in a type 316L austenitic stainless steel plate. Mater. Sci. Eng. A 460–461, 186–194 (2007).

    Article  CAS  Google Scholar 

  25. 25

    Liu, G. Z., Tao, N. R. & Lu, K. 316L austenite stainless steels strengthened by means of nano-scale twins. J. Mater. Sci. Technol. 26, 289–292 (2010).

    Article  CAS  Google Scholar 

  26. 26

    Ravi Kumar, B., Sharma, S. & Mahato, B. Formation of ultrafine grained microstructure in the austenitic stainless steel and its impact on tensile properties. Mater. Sci. Eng. A 528, 2209–2216 (2011).

    Article  CAS  Google Scholar 

  27. 27

    Ueno, H., Kakihata, K., Kaneko, Y., Hashimoto, S. & Vinogradov, A. Enhanced fatigue properties of nanostructured austenitic SUS 316L stainless steel. Acta Mater. 59, 7060–7069 (2011).

    Article  CAS  Google Scholar 

  28. 28

    Lu, K., Yan, F. K., Wang, H. T. & Tao, N. R. Strengthening austenitic steels by using nanotwinned austenitic grains. Scr. Mater. 66, 878–883 (2012).

    Article  CAS  Google Scholar 

  29. 29

    Albertini, C., Cadoni, E. & Solomos, G. Advances in the Hopkinson bar testing of irradiated/non-irradiated nuclear materials and large specimens. Phil. Trans. R. Soc. A 372, 20130197 (2014).

    Article  Google Scholar 

  30. 30

    Mower, T. M. & Long, M. J. Mechanical behavior of additive manufactured, powder-bed laser-fused materials. Mater. Sci. Eng. A 651, 198–213 (2016).

    Article  CAS  Google Scholar 

  31. 31

    Chen, X. H., Lu, J., Lu, L. & Lu, K. Tensile properties of a nanocrystalline 316L austenitic stainless steel. Scr. Mater. 52, 1039–1044 (2005).

    Article  CAS  Google Scholar 

  32. 32

    Kumar, B. R., Sharma, S. & Mahato, B. Formation of ultrafine grained microstructure in the austenitic stainless steel and its impact on tensile properties. Mater. Sci. Eng. A 528, 2209–2216 (2011).

    Article  CAS  Google Scholar 

  33. 33

    Fernandes de Lima, M. S. & Sankare, S. Microstructure and mechanical behavior of laser additive manufactured AISI 316 stainless steel stringers. Mater. Des. 55, 526–532 (2014).

    Article  CAS  Google Scholar 

  34. 34

    Saeidi, K., Gao, X., Zhong, Y. & Shen, Z. J. Hardened austenite steel with columnar sub-grain structure formed by laser melting. Mater. Sci. Eng. A 625, 221–229 (2015).

    Article  CAS  Google Scholar 

  35. 35

    Wang, D., Song, C. H., Yang, Y. Q. & Bai, Y. C. Investigation of crystal growth mechanism during selective laser melting and mechanical property characterization of 316L stainless steel parts. Mater. Des. 100, 291–299 (2016).

    Article  CAS  Google Scholar 

  36. 36

    Zhang, K., Wang, S., Liu, W. & Shang, X. Characterization of stainless steel parts by laser metal deposition shaping. Mater. Des. 55, 104–119 (2014).

    Article  CAS  Google Scholar 

  37. 37

    Mertens, A. et al. Mechanical properties of alloy Ti–6Al–4V and of stainless steel 316L processed by selective laser melting: influence of out-of-equilibrium microstructures. Powder Metall. 57, 184–189 (2014).

    Article  CAS  Google Scholar 

  38. 38

    Amato, K. N. et al. Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting. Acta Mater. 60, 2229–2239 (2012).

    Article  CAS  Google Scholar 

  39. 39

    Gu, D. et al. Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium. Acta Mater. 60, 3849–3860 (2012).

    Article  CAS  Google Scholar 

  40. 40

    Vrancken, B., Thijs, L., Kruth, J. P. & Van Humbeeck, J. Microstructure and mechanical properties of a novel beta titanium metallic composite by selective laser melting. Acta Mater. 68, 150–158 (2014).

    Article  CAS  Google Scholar 

  41. 41

    Saeidi, K., Kvetkova, L., Lofajc, F. & Shen, Z. Austenitic stainless steel strengthened by the in situ formation of oxide nanoinclusions. Rsc Adv. 5, 20747–20750 (2015).

    Article  CAS  Google Scholar 

  42. 42

    Tolosa, I., Garciandia, F., Zubiri, F., Zapirain, F. & Esnaola, A. Study of mechanical properties of AISI 316 stainless steel processed by ‘selective laser melting’, following different manufacturing strategies. Int. J. Adv. Manuf. Technol. 51, 639–647 (2010).

    Article  Google Scholar 

  43. 43

    Sun, Z., Tan, X., Tor, S. B. & Yeong, W. Y. Selective laser melting of stainless steel 316L with low porosity and high build rates. Mater. Des. 104, 197–204 (2016).

    Article  CAS  Google Scholar 

  44. 44

    Zhong, Y., Liu, L. F., Wikman, S., Cui, D. Q. & Shen, Z. J. Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting. J. Nucl. Mater. 470, 170–178 (2016).

    Article  CAS  Google Scholar 

  45. 45

    Murr, L. E. et al. Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J. Mater. Sci. Technol. 28, 1–14 (2012).

    Article  CAS  Google Scholar 

  46. 46

    Wu, J., Wang, X. Q., Wang, W., Attallah, M. M. & Loretto, M. H. Microstructure and strength of selectively laser melted AlSi10Mg. Acta Mater. 117, 311–320 (2016).

    Article  CAS  Google Scholar 

  47. 47

    Tomota, Y., Lukas, P., Neov, D., Harjo, S. & Abe, Y. R. In situ neutron diffraction during tensile deformation of a ferrite-cementite steel. Acta Mater. 51, 805–817 (2003).

    Article  CAS  Google Scholar 

  48. 48

    Clausen, B., Lorentzen, T. & Leffers, T. Self-consistent modelling of the plastic deformation of FCC polycrystals and its implications for diffraction measurements of internal stresses. Acta Mater. 46, 3087–3098 (1998).

    Article  CAS  Google Scholar 

  49. 49

    Yan, K., Carr, D. G., Callaghan, M. D., Liss, K.-D. & Li, H. Deformation mechanisms of twinning-induced plasticity steels: in situ synchrotron characterization and modeling. Scr. Mater. 62, 246–249 (2010).

    Article  CAS  Google Scholar 

  50. 50

    Mughrabi, H. Deformation-induced long-range internal stresses and lattice plane misorientations and the role of geometrically necessary dislocations. Philos. Mag. 86, 4037–4054 (2006).

    Article  CAS  Google Scholar 

  51. 51

    Wang, Y. M. et al. Controlling factors in tensile deformation of nanocrystalline cobalt and nickel. Phys. Rev. B 85, 014101 (2012).

    Article  CAS  Google Scholar 

  52. 52

    Wang, Y. M. et al. Defective twin boundaries in nanotwinned metals. Nat. Mater. 12, 697–702 (2013).

    Article  CAS  Google Scholar 

  53. 53

    King, W. E. et al. Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing. J. Mater. Process. Technol. 214, 2915–2925 (2014).

    Article  Google Scholar 

  54. 54

    Zeng, Z. et al. Gradient plasticity in graident nano-grained metals. Extreme Mech. Lett. 8, 213–219 (2016).

    Article  Google Scholar 

  55. 55

    Rice, J. R. Inelastic constitutive relations for solids: an internal-variable theory and its application to metal plasticity. J. Mech. Phys. Solids 19, 433–455 (1971).

    Article  Google Scholar 

  56. 56

    Asaro, R. J. & Rice, J. R. Strain localization in ductile single crystals. J. Mech. Phys. Solids 25, 309–338 (1977).

    Article  Google Scholar 

  57. 57

    Kalidindi, S. R., Bronkhorst, C. A. & Anand, L. Crystallographic texture evolution in bulk deformation processing of FCC metals. J. Mech. Phys. Solids 40, 537–569 (1992).

    Article  CAS  Google Scholar 

  58. 58

    Jang, D. & Atzmon, M. Grain-boundary relaxation and its effect on plasticity in nanocrystalline Fe. J. Appl. Phys. 99, 083504 (2006).

    Article  CAS  Google Scholar 

  59. 59

    Rodrguez-Baracaldo, R., Benito, J. A., Caro, J., Cabrera, J. M. & Prado, J. M. Strain rate sensitivity of nanocrystalline and ultrafine-grained steel obtained by mechanical attrition. Mater. Sci. Eng. A 485, 325–333 (2008).

    Article  CAS  Google Scholar 

  60. 60

    Kashyap, B. P. & Tangri, K. On the Hall–Petch relationship and substructural evolution in type 316L stainless steel. Acta Metall. Mater. 43, 3971–3981 (1995).

    Article  CAS  Google Scholar 

  61. 61

    Quey, R., Dawson, P. R. & Barbe, F. Large-scale 3D random polycrystals for the finite element method: generation, meshing and remeshing. Comput. Methods Appl. Mech. Eng. 200, 1729–1745 (2011).

    Article  Google Scholar 

  62. 62

    Plimpton, S. & Hendrickson, B. A new parallel method for molecular dynamics simulation of macromolecular systems. J. Comput. Chem. 17, 326–337 (1996).

    Article  CAS  Google Scholar 

  63. 63

    Radjaï, F. & Dubois, F. Discrete-Element Modeling of Granular Materials (Wiley-ISTE, 2011).

    Google Scholar 

  64. 64

    Brilliantov, N. V., Spahn, F., Hertzsch, J.-M. & Pöschel, T. Model for collisions in granular gases. Phys. Rev. E 53, 5382–5392 (1996).

    Article  CAS  Google Scholar 

  65. 65

    Silbert, L. E. et al. Granular flow down an inclined plane: Bagnold scaling and rheology. Phys. Rev. E 64, 051302 (2001).

    Article  CAS  Google Scholar 

  66. 66

    Zhang, H. P. & Makse, H. A. Jamming transition in emulsions and granular materials. Phys. Rev. E 72, 011301 (2005).

    Article  CAS  Google Scholar 

  67. 67

    Abaqus, Abaqus 6.13 Documentation (Dassault Systèmes, 2013).

Download references


The authors thank S. Khairallah, T. Haxhimali, G. Guss, S. Burke, P. Alexander, B. El-dasher, W. King and C. Kamash for their experimental assistance and/or inspiring discussion. J. Li is acknowledged for his initial contribution to the model set-up. R.T.O. acknowledges support from the US Department of Energy, Basic Energy Sciences, Materials Science and Engineering Division, under Contract No. DEAC02-07CH11358. This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under contract No. DE-AC52-07NA27344. ChemiSTEM was performed at the OSU Electron Microscope Facility which is supported by NSF MRI grant number 1040588 and by the Murdock Charitable Trust and the Oregon Nanoscience and Micro-Technologies Institute. This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

Author information




Y.M.W., T.V., J.T.M., T.T.R. and M.K.S. characterized microstructures. T.V., J.Y., W.C. and Z.L. performed mechanical testing. Y.M.W., J.Y., N.P.C. and R.T.O. conducted in situ SXRD experiments and analysed the resultant data. P.J.D. and M.J.M. were involved with processing parameter development and sample print. Z.Z., Y.Z. and T.Z. constructed the models and conducted simulations. Y.M.W., T.V. and T.Z. drafted the initial manuscript. Y.M.W. conceived, designed, and led the project. All co-authors contributed to the data analysis and discussion.

Corresponding author

Correspondence to Y. Morris Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2428 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Voisin, T., McKeown, J. et al. Additively manufactured hierarchical stainless steels with high strength and ductility. Nature Mater 17, 63–71 (2018).

Download citation

Further reading


Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing