Maintenance of neural progenitor cell stemness in 3D hydrogels requires matrix remodelling


Neural progenitor cell (NPC) culture within three-dimensional (3D) hydrogels is an attractive strategy for expanding a therapeutically relevant number of stem cells. However, relatively little is known about how 3D material properties such as stiffness and degradability affect the maintenance of NPC stemness in the absence of differentiation factors. Over a physiologically relevant range of stiffness from 0.5 to 50 kPa, stemness maintenance did not correlate with initial hydrogel stiffness. In contrast, hydrogel degradation was both correlated with, and necessary for, maintenance of NPC stemness. This requirement for degradation was independent of cytoskeletal tension generation and presentation of engineered adhesive ligands, instead relying on matrix remodelling to facilitate cadherin-mediated cell–cell contact and promote β-catenin signalling. In two additional hydrogel systems, permitting NPC-mediated matrix remodelling proved to be a generalizable strategy for stemness maintenance in 3D. Our findings have identified matrix remodelling, in the absence of cytoskeletal tension generation, as a previously unknown strategy to maintain stemness in 3D.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: NPC stemness varies as a function of hydrogel degradability.
Figure 2: Maintenance of NPC stemness in hydrogels requires matrix degradation but does not depend on cytoskeletal tension or engineered matrix-adhesion ligand interactions.
Figure 3: Matrix remodelling is required for NPC proliferation and differentiation capacity.
Figure 4: Matrix remodelling regulates NPC stemness by modulating cadherin-mediated cell–cell contact.
Figure 5: Matrix remodelling modulates β-catenin signalling via cadherin contacts to promote NPC stemness.
Figure 6: NPC stemness maintenance varies with remodelling, but not initial stiffness, in both covalently and physically crosslinked hydrogels.


  1. 1

    Goldman, S. Stem and progenitor cell–based therapy of the human central nervous system. Nat. Biotechnol. 23, 862–871 (2005).

    CAS  Google Scholar 

  2. 2

    Chen, K. G., Mallon, B. S., McKay, R. D. G. & Robey, P. G. Human pluripotent stem cell culture: considerations for maintenance, expansion, and therapeutics. Cell Stem Cell 14, 13–26 (2014).

    CAS  Google Scholar 

  3. 3

    Anderson, A. J., Piltti, K. M., Hooshmand, M. J., Nishi, R. A. & Cummings, B. J. Preclinical efficacy failure of human CNS-derived stem cells for use in the pathway study of cervical spinal cord injury. Stem Cell Rep. 8, 249–263 (2017).

    Google Scholar 

  4. 4

    Marsh, S. E. et al. HuCNS-SC human NSCs fail to differentiate, form ectopic clusters, and provide no cognitive benefits in a transgenic model of Alzheimer’s disease. Stem Cell Rep. 8, 235–248 (2017).

    CAS  Google Scholar 

  5. 5

    Azarin, S. M. & Palecek, S. P. Matrix revolutions: a trinity of defined substrates for long-term expansion of human ESCs. Cell Stem Cell 7, 7–8 (2010).

    CAS  Google Scholar 

  6. 6

    Dzhoyashvili, N. A., Shen, S. & Rochev, Y. A. Natural and synthetic materials for self-renewal, long-term maintenance, and differentiation of induced pluripotent stem cells. Adv. Healthc. Mater. 4, 2342–2359 (2015).

    CAS  Google Scholar 

  7. 7

    Lutolf, M. P., Doyonnas, R., Havenstrite, K., Koleckar, K. & Blau, H. M. Perturbation of single hematopoietic stem cell fates in artificial niches. Integr. Biol. 1, 59–69 (2009).

    CAS  Google Scholar 

  8. 8

    Gilbert, P. M. et al. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329, 1078–1081 (2010).

    CAS  Article  Google Scholar 

  9. 9

    McDevitt, T. C. Scalable culture of human pluripotent stem cells in 3D. Proc. Natl Acad. Sci. USA 110, 20852–20853 (2013).

    CAS  Google Scholar 

  10. 10

    Lei, Y. & Schaffer, D. V. A fully defined and scalable 3D culture system for human pluripotent stem cell expansion and differentiation. Proc. Natl Acad. Sci. USA 110, E5039–E5048 (2013).

    CAS  Google Scholar 

  11. 11

    Siti-Ismail, N., Bishop, A. E., Polak, J. M. & Mantalaris, A. The benefit of human embryonic stem cell encapsulation for prolonged feeder-free maintenance. Biomaterials 29, 3946–3952 (2008).

    CAS  Google Scholar 

  12. 12

    Gerecht, S. et al. Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proc. Natl Acad. Sci. USA 104, 11298–11303 (2007).

    CAS  Google Scholar 

  13. 13

    Morrison, S. J. & Spradling, A. C. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 132, 598–611 (2008).

    CAS  Google Scholar 

  14. 14

    Keung, A. J., Kumar, S. & Schaffer, D. V. Presentation counts: microenvironmental regulation of stem cells by biophysical and material cues. Annu. Rev. Cell Dev. Biol. 26, 533–556 (2010).

    CAS  Google Scholar 

  15. 15

    Discher, D. E., Mooney, D. J. & Zandstra, P. W. Growth factors, matrices, and forces combine and control stem cells. Science 324, 1673–1677 (2009).

    CAS  Google Scholar 

  16. 16

    Little, L., Healy, K. E. & Schaffer, D. Engineering biomaterials for synthetic neural stem cell microenvironments. Chem. Rev. 108, 1787–1796 (2008).

    CAS  Google Scholar 

  17. 17

    Yang, C., Tibbitt, M. W., Basta, L. & Anseth, K. S. Mechanical memory and dosing influence stem cell fate. Nat. Mater. 13, 645–652 (2014).

    CAS  Google Scholar 

  18. 18

    Shi, P., Shen, K., Ghassemi, S., Hone, J. & Kam, L. C. Dynamic force generation by neural stem cells. Cell. Mol. Bioeng. 2, 464–474 (2009).

    CAS  Google Scholar 

  19. 19

    Gershlak, J. R. et al. Mesenchymal stem cells ability to generate traction stress in response to substrate stiffness is modulated by the changing extracellular matrix composition of the heart during development. Biochem. Biophys. Res. Commun. 439, 161–166 (2013).

    CAS  Google Scholar 

  20. 20

    Saha, K. et al. Substrate modulus directs neural stem cell behavior. Biophys. J. 95, 4426–4438 (2008).

    CAS  Google Scholar 

  21. 21

    Keung, A. J., de Juan-Pardo, E. M., Schaffer, D. V. & Kumar, S. Rho GTPases mediate the mechanosensitive lineage commitment of neural stem cells. Stem Cells 29, 1886–1897 (2011).

    CAS  Google Scholar 

  22. 22

    Teixeira, A. I. et al. The promotion of neuronal maturation on soft substrates. Biomaterials 30, 4567–4572 (2009).

    CAS  Google Scholar 

  23. 23

    Leipzig, N. D. & Shoichet, M. S. The effect of substrate stiffness on adult neural stem cell behavior. Biomaterials 30, 6867–6878 (2009).

    CAS  Google Scholar 

  24. 24

    Banerjee, A. et al. The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells. Biomaterials 30, 4695–4699 (2009).

    CAS  Google Scholar 

  25. 25

    Baker, B. M. & Chen, C. S. Deconstructing the third dimension—How 3D culture microenvironments alter cellular cues. J. Cell Sci. 125, 3015–3024 (2012).

    CAS  Google Scholar 

  26. 26

    Chaudhuri, O. et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater. 15, 326–334 (2016).

    CAS  Google Scholar 

  27. 27

    Patel, P. N., Gobin, A. S., West, J. L. & Patrick, C. W. Poly(ethylene glycol) hydrogel system supports preadipocyte viability, adhesion, and proliferation. Tissue Eng. 11, 1498–1505 (2005).

    CAS  Google Scholar 

  28. 28

    Bott, K. et al. The effect of matrix characteristics on fibroblast proliferation in 3D gels. Biomaterials 31, 8454–8464 (2010).

    CAS  Google Scholar 

  29. 29

    Khetan, S. et al. Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nat. Mater. 12, 458–465 (2013).

    CAS  Google Scholar 

  30. 30

    Saha, K., Irwin, E. F., Kozhukh, J., Schaffer, D. V. & Healy, K. E. Biomimetic interfacial interpenetrating polymer networks control neural stem cell behavior. J. Biomed. Mater. Res. A 81A, 240–249 (2007).

    CAS  Google Scholar 

  31. 31

    Mithieux, S. M. & Weiss, A. S. Elastin. Adv. Protein Chem. 70, 437–461 (2005).

    CAS  Google Scholar 

  32. 32

    Chung, C., Lampe, K. J. & Heilshorn, S. C. Tetrakis(hydroxymethyl) phosphonium chloride as a covalent cross-linking agent for cell encapsulation within protein-based hydrogels. Biomacromolecules 13, 3912–3916 (2012).

    CAS  Google Scholar 

  33. 33

    McKay, R. Stem cells in the central nervous system. Science 276, 66–71 (1997).

    CAS  Google Scholar 

  34. 34

    Ahmed, S. The culture of neural stem cells. J. Cell. Biochem. 106, 1–6 (2009).

    CAS  Google Scholar 

  35. 35

    Huebsch, N. et al. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat. Mater. 9, 518–526 (2010).

    CAS  Google Scholar 

  36. 36

    Tong, X. & Yang, F. Sliding hydrogels with mobile molecular ligands and crosslinks as 3D stem cell niche. Adv. Mater. 28, 7257–7263 (2016).

    CAS  Google Scholar 

  37. 37

    Vincent, L. G. & Engler, A. J. Stem cell differentiation: Post-degradation forces kick in. Nat. Mater. 12, 384–386 (2013).

    CAS  Google Scholar 

  38. 38

    Gefen, A. & Margulies, S. S. Are in vivo and in situ brain tissues mechanically similar? J. Biomech. 37, 1339–1352 (2004).

    Google Scholar 

  39. 39

    Taylor, Z. & Miller, K. Reassessment of brain elasticity for analysis of biomechanisms of hydrocephalus. J. Biomech. 37, 1263–1269 (2004).

    Google Scholar 

  40. 40

    Lim, T. C., Toh, W. S., Wang, L.-S., Kurisawa, M. & Spector, M. The effect of injectable gelatin-hydroxyphenylpropionic acid hydrogel matrices on the proliferation, migration, differentiation and oxidative stress resistance of adult neural stem cells. Biomaterials 33, 3446–3455 (2012).

    CAS  Google Scholar 

  41. 41

    Zhang, J. et al. Cortical neural precursors inhibit their own differentiation via N-cadherin maintenance of β-catenin signaling. Dev. Cell 18, 472–479 (2010).

    CAS  Google Scholar 

  42. 42

    Karpowicz, P. et al. E-cadherin regulates neural stem cell self-renewal. J. Neurosci. 29, 3885–3896 (2009).

    CAS  Google Scholar 

  43. 43

    Chenn, A. & Walsh, C. A. Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 297, 365–369 (2002).

    CAS  Google Scholar 

  44. 44

    Straley, K. S. & Heilshorn, S. C. Independent tuning of multiple biomaterial properties using protein engineering. Soft Matter 5, 114–124 (2009).

    CAS  Google Scholar 

  45. 45

    Wang, H., Cai, L., Paul, A., Enejder, A. & Heilshorn, S. C. Hybrid elastin-like polypeptide–polyethylene glycol (ELP-PEG) hydrogels with improved transparency and independent control of matrix mechanics and cell ligand density. Biomacromolecules 15, 3421–3428 (2014).

    CAS  Google Scholar 

  46. 46

    Enejder, A., Brackmann, C. & Svedberg, F. Coherent anti-Stokes Raman scattering microscopy of cellular lipid storage. IEEE J. Sel. Top. Quantum Electron. 16, 506–515 (2010).

    CAS  Google Scholar 

  47. 47

    Chung, C., Pruitt, B. L. & Heilshorn, S. C. Spontaneous cardiomyocyte differentiation of mouse embryoid bodies regulated by hydrogel crosslink density. Biomater. Sci. 1, 1082–1090 (2013).

    CAS  Google Scholar 

  48. 48

    Jönsson, P., Jonsson, M. P., Tegenfeldt, J. O. & Höök, F. A method improving the accuracy of fluorescence recovery after photobleaching analysis. Biophys. J. 95, 5334–5348 (2008).

    Google Scholar 

  49. 49

    Babu, H., Cheung, G., Kettenmann, H., Palmer, T. D. & Kempermann, G. Enriched monolayer precursor cell cultures from micro-dissected adult mouse dentate gyrus yield functional granule cell-like neurons. PLoS ONE 2, e388 (2007).

    Google Scholar 

  50. 50

    Madl, C. M., Katz, L. M. & Heilshorn, S. C. Bio-orthogonally crosslinked, engineered protein hydrogels with tunable mechanics and biochemistry for cell encapsulation. Adv. Funct. Mater. 26, 3612–3620 (2016).

    CAS  Google Scholar 

  51. 51

    Neef, A. B. & Luedtke, N. W. Dynamic metabolic labeling of DNA in vivo with arabinosyl nucleosides. Proc. Natl Acad. Sci. USA 108, 20404–20409 (2011).

    CAS  Google Scholar 

  52. 52

    Salic, A. & Mitchison, T. J. A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc. Natl Acad. Sci. USA 105, 2415–2420 (2008).

    CAS  Google Scholar 

  53. 53

    DiMarco, R. L., Dewi, R. E., Bernal, G., Kuo, C. & Heilshorn, S. C. Protein-engineered scaffolds for in vitro 3D culture of primary adult intestinal organoids. Biomater. Sci. 3, 1376–1385 (2015).

    CAS  Google Scholar 

  54. 54

    Moullan, N. et al. Tetracyclines disturb mitochondrial function across eukaryotic models: a call for caution in biomedical research. Cell Rep. 10, 1681–1691 (2015).

    CAS  Google Scholar 

  55. 55

    Roghani, M. et al. Metalloprotease-disintegrin MDC9: intracellular maturation and catalytic activity. J. Biol. Chem. 274, 3531–3540 (1999).

    CAS  Google Scholar 

  56. 56

    Moss, M. L., Rasmussen, F. H., Nudelman, R., Dempsey, P. J. & Williams, J. Fluorescent substrates useful as high throughput screening tools for ADAM9. Comb. Chem. High Throughput Screen. 13, 358–365 (2010).

    CAS  Google Scholar 

  57. 57

    Lutolf, M. P., Raeber, G. P., Zisch, A. H., Tirelli, N. & Hubbell, J. A. Cell-responsive synthetic hydrogels. Adv. Mater. 15, 888–892 (2003).

    CAS  Google Scholar 

  58. 58

    Rowley, J. A., Madlambayan, G. & Mooney, D. J. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20, 45–53 (1999).

    CAS  Google Scholar 

  59. 59

    Desai, R. M., Koshy, S. T., Hilderbrand, S. A., Mooney, D. J. & Joshi, N. S. Versatile click alginate hydrogels crosslinked via tetrazine-norbornene chemistry. Biomaterials 50, 30–37 (2015).

    CAS  Google Scholar 

  60. 60

    Romano, N. H., Madl, C. M. & Heilshorn, S. C. Matrix RGD ligand density and L1CAM-mediated Schwann cell interactions synergistically enhance neurite outgrowth. Acta Biomater. 11, 48–57 (2015).

    CAS  Google Scholar 

Download references


The authors thank T. Palmer and H. Babu (Stanford Neurosurgery) for providing the murine NPCs, A. Proctor (Stanford Chemical Engineering) for assistance with ELP expression and purification, K. Dubbin (Stanford Materials Science & Engineering) for assistance with FRAP, and C. Kuo (Stanford Medicine) for providing the TOP-FLASH plasmid. Sorting of the lentivirally transduced NPCs for the ADAM9-knockdown experiments was performed with the assistance of C. Crumpton and B. Gomez on an instrument in the Stanford Shared FACS Facility obtained using NIH S10 shared instrument grant S10RR025518-01. C.M.M. acknowledges support from an NIH NRSA pre-doctoral fellowship (F31 EB020502) and the Siebel Scholars Program. This work was supported by funding from the National Institutes of Health (S.C.H.: U19 AI116484 and R21 EB018407), National Science Foundation (S.C.H.: DMR 1508006), California Institute for Regenerative Medicine (S.C.H.: RT3-07948), and Trygger Foundation (A.E.).

Author information




Experiments were designed by C.M.M. and S.C.H., and carried out by C.M.M., B.L.L., R.E.D., C.B.D., R.S.S., M.K., K.J.L. and D.N. CARS experiments were performed with D.N. and A.E. Alginate hydrogel experiments were performed with R.S.S. and O.C. The manuscript was written by C.M.M. and S.C.H. The principal investigator is S.C.H.

Corresponding author

Correspondence to Sarah C. Heilshorn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2743 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Madl, C., LeSavage, B., Dewi, R. et al. Maintenance of neural progenitor cell stemness in 3D hydrogels requires matrix remodelling. Nature Mater 16, 1233–1242 (2017).

Download citation

Further reading