Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Towards properties on demand in quantum materials

Abstract

The past decade has witnessed an explosion in the field of quantum materials, headlined by the predictions and discoveries of novel Landau-symmetry-broken phases in correlated electron systems, topological phases in systems with strong spin–orbit coupling, and ultra-manipulable materials platforms based on two-dimensional van der Waals crystals. Discovering pathways to experimentally realize quantum phases of matter and exert control over their properties is a central goal of modern condensed-matter physics, which holds promise for a new generation of electronic/photonic devices with currently inaccessible and likely unimaginable functionalities. In this Review, we describe emerging strategies for selectively perturbing microscopic interaction parameters, which can be used to transform materials into a desired quantum state. Particular emphasis will be placed on recent successes to tailor electronic interaction parameters through the application of intense fields, impulsive electromagnetic stimulation, and nanostructuring or interface engineering. Together these approaches outline a potential roadmap to an era of quantum phenomena on demand.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The properties-on-demand approach.
Figure 2: Methods for controlling quantum phases.
Figure 3: Superconductivity and exciton condensates on demand.
Figure 4: Hidden and perturbation-enhanced phases of quantum materials.
Figure 5: Topological properties on demand.

Similar content being viewed by others

References

  1. Subatomic opportunities: Quantum leaps. The Economist (11 March 2017).

  2. Zhang, J. & Averitt, R. D. Dynamics and control in complex transition metal oxides. Annu. Rev. Mater. Res. 44, 19–43 (2014).

    Article  CAS  Google Scholar 

  3. Basov, D. N., Averitt, R. D., van der Marel, D., Dressel, M. & Haule, K. Electrodynamics of correlated electron materials. Rev. Mod. Phys. 83, 471–541 (2011).

    Article  CAS  Google Scholar 

  4. Oka, T. & Aoki, H. Photovoltaic Hall effect in graphene. Phys. Rev. B 79, 81406 (2009).

    Article  CAS  Google Scholar 

  5. Inoue, J. & Tanaka, A. Photoinduced transition between conventional and topological insulators in two-dimensional electronic systems. Phys. Rev. Lett. 105, 017401 (2010).

    Article  CAS  Google Scholar 

  6. Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nat. Phys. 7, 490–495 (2011). This theoretical paper proposed a method to produce a topologically non-trivial electronic state via photoexcitation of semiconductor.

    Article  CAS  Google Scholar 

  7. Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

    Article  CAS  Google Scholar 

  8. Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

    Article  Google Scholar 

  9. Morimoto, T., Zhong, S., Orenstein, J. & Moore, J. E. Semiclassical theory of nonlinear magneto-optical responses with applications to topological Dirac/Weyl semimetals. Phys. Rev. B 94, 245121 (2016).

    Article  Google Scholar 

  10. Mahmood, F. et al. Selective scattering between Floquet–Bloch and Volkov states in a topological insulator. Nat. Phys. 12, 306–310 (2016).

    Article  CAS  Google Scholar 

  11. Wang, Y. H., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Observation of Floquet–Bloch states on the surface of a topological insulator. Science 342, 453–457 (2013).

    Article  CAS  Google Scholar 

  12. Badoux, S. et al. Change of carrier density at the pseudogap critical point of a cuprate superconductor. Nature 531, 210–214 (2016).

    Article  CAS  Google Scholar 

  13. Schiffrin, A. et al. Optical-field-induced current in dielectrics. Nature 493, 70–74 (2013).

    Article  CAS  Google Scholar 

  14. Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).

    Article  CAS  Google Scholar 

  15. Taillefer, L. Superconductivity and quantum criticality. Phys. Canada 67, 109–112 (2011).

    Google Scholar 

  16. Sebastian, S. E., Harrison, N. & Lonzarich, G. G. Towards resolution of the Fermi surface in underdoped high-Tc superconductors. Rep. Prog. Phys. 75, 102501 (2012).

    Article  CAS  Google Scholar 

  17. Zhou, Y. & Ramanathan, S. Correlated electron materials and field effect transistors for logic: a review. Crit. Rev. Solid State Mater. Sci. 38, 286–317 (2013).

    Article  CAS  Google Scholar 

  18. Inoue, I. H. & Rozenberg, M. J. Taming the Mott transition for a novel Mott transistor. Adv. Funct. Mater. 18, 2289–2292 (2008).

    Article  CAS  Google Scholar 

  19. Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature 453, 80–83 (2008).

    Article  CAS  Google Scholar 

  20. Driscoll, T. et al. Memristive adaptive filters. Appl. Phys. Lett. 97, 093502 (2010).

    Article  CAS  Google Scholar 

  21. Martin, I., Blanter, Ya. M. & Morpurgo, A. F. Topological confinement in bilayer graphene. Phys. Rev. Lett. 100, 036804 (2008).

    Article  CAS  Google Scholar 

  22. Ye, Z., Sun, D. & Heinz, T. F. Optical manipulation of valley pseudospin. Nat. Phys. 13, 26–29 (2016).

    Article  CAS  Google Scholar 

  23. Lumer, Y., Plotnik, Y., Rechtsman, M. C. & Segev, M. Self-localized states in photonic topological insulators. Phys. Rev. Lett. 111, 243905 (2013).

    Article  CAS  Google Scholar 

  24. Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photon. 8, 821–829 (2014).

    Article  CAS  Google Scholar 

  25. Low, T. et al. Polaritons in layered 2D materials. Nat. Mater. 16, 182–194 (2016).

    Article  CAS  Google Scholar 

  26. Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    Article  CAS  Google Scholar 

  27. Song, J. C. W. & Rudner, M. S. Chiral plasmons without magnetic field. Proc. Natl Acad. Sci. USA 113, 4658–4663 (2016).

    Article  CAS  Google Scholar 

  28. Morimoto, T. & Nagaosa, N. Topological nature of nonlinear optical effects in solids. Sci. Adv. 2, e1501524 (2016).

    Article  Google Scholar 

  29. Cook, A. M., Fregoso, B. M., De Juan, F., Coh, S. & Moore, J. E. Design principles for shift current photovoltaics. Nat. Commun. 8, 14176 (2017).

    Article  CAS  Google Scholar 

  30. Wu, L. et al. Giant anisotropic nonlinear optical response in transition metal monopnictide Weyl semimetals. Nat. Phys. 13, 350–355 (2017).

    Article  CAS  Google Scholar 

  31. Ma, Q. et al. Direct optical detection of Weyl fermion chirality in a topological semimetal. Nat. Phys. 13, 842–847 (2017).

    Article  CAS  Google Scholar 

  32. Wu, S. et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature 520, 69–72 (2015).

    Article  CAS  Google Scholar 

  33. Tokura, Y., Kawasaki, M. & Nagaosa, N. Emergent functions of quantum materials. Nat. Phys. http://doi.org/10.1038/nphys4274 (2017).

    Article  CAS  Google Scholar 

  34. Drozdov, A. P., Eremets, M. I., Troyan, I. A., Ksenofontov, V. & Shylin, S. I. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 525, 73–76 (2015).

    Article  CAS  Google Scholar 

  35. Zhong, D. et al. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci. Adv. 3, e1603113 (2017).

    Article  Google Scholar 

  36. Efetov, D. K. et al. Specular interband Andreev reflections at van der Waals interfaces between graphene and NbSe2 . Nat. Phys. 12, 328–332 (2016).

    Article  CAS  Google Scholar 

  37. Levy, N. et al. Strain-induced pseudo-magnetic fields greater than 300 tesla in graphene nanobubbles. Science 329, 544–547 (2010).

    Article  CAS  Google Scholar 

  38. Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    Article  CAS  Google Scholar 

  39. Kumar, R. K. et al. Super-ballistic flow of viscous electron fluid through graphene constrictions. Nat. Phys. http://doi.org/10.1038/nphys4240 (2017).

    Article  CAS  Google Scholar 

  40. Chakhalian, J., Freeland, J. W., Millis, A. J., Panagopoulos, C. & Rondinelli, J. M. Colloquium: Emergent properties in plane view: Strong correlations at oxide interfaces. Rev. Mod. Phys. 86, 1189–1202 (2014).

    Article  CAS  Google Scholar 

  41. Kim, T. H. et al. Polar metals by geometric design. Nature 533, 68–72 (2016).

    Article  CAS  Google Scholar 

  42. Gerber, S. et al. Three-dimensional charge density wave order in YBa2Cu3O6.67 at high magnetic fields. Science 350, 949–952 (2015).

    Article  CAS  Google Scholar 

  43. Chan, M. K. et al. Single reconstructed Fermi surface pocket in an underdoped single-layer cuprate superconductor. Nat. Commun. 7, 12244 (2016).

    Article  CAS  Google Scholar 

  44. Kampfrath, T., Tanaka, K. & Nelson, K. A. Resonant and nonresonant control over matter and light by intense terahertz transients. Nat. Photon. 7, 680–690 (2013).

    Article  CAS  Google Scholar 

  45. Liu, M. et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature 487, 345–348 (2012).

    Article  CAS  Google Scholar 

  46. Rajasekaran, S. et al. Parametric amplification of a superconducting plasma wave. Nat. Phys. 12, 1012–1016 (2016).

    Article  CAS  Google Scholar 

  47. Steinleitner, P. et al. Direct observation of ultrafast exciton formation in a monolayer of WSe2 . Nano Lett. 17, 1455–1460 (2017).

    Article  CAS  Google Scholar 

  48. Oka, T. Nonlinear doublon production in a Mott insulator: Landau–Dykhne method applied to an integrable model. Phys. Rev. B. 86, 075148 (2012).

    Article  CAS  Google Scholar 

  49. Mayer, B. et al. Tunneling breakdown of a strongly correlated insulating state in VO2 induced by intense multiterahertz excitation. Phys. Rev. B 91, 235113 (2015).

    Article  CAS  Google Scholar 

  50. Kirilyuk, A., Kimel, A. V & Rasing, T. Ultrafast optical manipulation of magnetic order. Rev. Mod. Phys. 82, 2731–2784 (2010).

    Article  Google Scholar 

  51. Matsukura, F., Tokura, Y. & Ohno, H. Control of magnetism by electric fields. Nat. Nanotech. 10, 209–220 (2015).

    Article  CAS  Google Scholar 

  52. Först, M. et al. Nonlinear phononics as an ultrafast route to lattice control. Nat. Phys. 7, 854–856 (2011).

    Article  CAS  Google Scholar 

  53. Subedi, A., Cavalleri, A. & Georges, A. Theory of nonlinear phononics for coherent light control of solids. Phys. Rev. B 89, 220301 (2014).

    Article  CAS  Google Scholar 

  54. Stojchevska, L. et al. Ultrafast switching to a stable hidden quantum state in an electronic crystal. Science 344, 177–180 (2014).

    Article  CAS  Google Scholar 

  55. Kiryukhin, V. et al. An X-ray-induced insulator–metal transition in a magnetoresistive manganite. Nature 386, 813–815 (1997). Discovery of persistent metallic state in manganites induced by illumination with X-rays.

    Article  CAS  Google Scholar 

  56. Jingdi Zhang et. al. et al. Cooperative photoinduced metastable phase control in strained manganite films. Nat. Mater. 15, 956–960 (2016).

    Article  CAS  Google Scholar 

  57. Basov, D. N., Fogler, M. M. & García de Abajo, F. J. Polaritons in van der Waals materials. Science 354, aag1992 (2016).

    Article  CAS  Google Scholar 

  58. Rivera, N., Kaminer, I., Zhen, B., Joannopoulos, J. D. & Soljačić, M. Shrinking light to allow forbidden transitions on the atomic scale. Science 353, 263–269 (2016).

    Article  CAS  Google Scholar 

  59. Flick, J. et al. Atoms and molecules in cavities, from weak to strong coupling in quantum-electrodynamics (QED) chemistry. Proc. Natl Acad. Sci. USA 12, 3026–3034 (2017).

    Article  CAS  Google Scholar 

  60. Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in Mott insulators. Nat. Commun. 6, 6708 (2015).

    Article  CAS  Google Scholar 

  61. Wang, Y., Claassen, M., Moritz, B. & Devereaux, T. P. Producing coherent excitations in pumped Mott antiferromagnetic insulators. Preprint at http://arxiv.org/abs/1706.06228v1 (2017).

  62. Dehghani, H. & Mitra, A. Optical Hall conductivity of a Floquet topological insulator. Phys. Rev. B 92, 165111 (2015).

    Article  CAS  Google Scholar 

  63. Iadecola, T., Neupert, T. & Chamon, C. Occupation of topological Floquet bands in open systems. Phys. Rev. B 91, 235133 (2015).

    Article  CAS  Google Scholar 

  64. Seetharam, K. I., Bardyn, C.-E., Lindner, N. H., Rudner, M. S. & Refael, G. Controlled population of Floquet–Bloch states via coupling to Bose and Fermi baths. Phys. Rev. X 5, 041050 (2015).

    Google Scholar 

  65. De Giovannini, U., Hübener, H. & Rubio, A. Monitoring electron–photon dressing in WSe2 . Nano Lett. 16, 7993–7998 (2016). This article offers the most detailed description the formation of quasistatic electronic structure under periodic electromagnetic excitation.

    Article  CAS  Google Scholar 

  66. Schmitt, F. et al. Transient electronic structure and melting of a charge density wave in TbTe3 . Science 321, 1649–1652 (2008).

    Article  CAS  Google Scholar 

  67. Gerber, S. et al. Femtosecond electron-phonon lock-in by photoemission and x-ray free-electron laser. Science 357, 71–75 (2017). The authors succeeded to synchronize for the first time transient photoemission and transient X-ray studies by locking into a coherent phonon mode.

    Article  CAS  Google Scholar 

  68. Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014). Excellent review article discussing valley control of electronic and optical phenomena in TMD compounds.

    Article  CAS  Google Scholar 

  69. Eckardt, A. & Anisimovas, E. High-frequency approximation for periodically driven quantum systems from a Floquet-space perspective. New J. Phys. 17, 093039 (2015).

    Article  CAS  Google Scholar 

  70. Rüegg, C. et al. Bose–Einstein condensation of the triplet states in the magnetic insulator TlCuCl3 . Nature 423, 62–65 (2003).

    Article  CAS  Google Scholar 

  71. Eisenstein, J. P. & Macdonald, A. H. Bose–Einstein condensation of excitons in bilayer electron systems. Nature 432, 691–694 (2004).

    Article  CAS  Google Scholar 

  72. Byrnes, T., Kim, N. Y. & Yamamoto, Y. Exciton–polariton condensates. Nat. Phys. 10, 803–813 (2014).

    Article  CAS  Google Scholar 

  73. Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y. & Akimitsu, J. Superconductivity at 39 K in magnesium diboride. Nature 410, 63–64 (2001).

    Article  CAS  Google Scholar 

  74. Johnston, D. C. The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides. Adv. Phys. 59, 803–1061 (2010).

    Article  CAS  Google Scholar 

  75. Basov, D. N. & Chubukov, A. V. Manifesto for a higher Tc . Nat. Phys. 7, 272–276 (2011).

    Article  CAS  Google Scholar 

  76. Graf, J. et al. Nodal quasiparticle meltdown in ultrahigh-resolution pump-probe angle-resolved photoemission. Nat. Phys. 7, 805–809 (2011).

    Article  CAS  Google Scholar 

  77. Cilento, F. et al. In search for the pairing glue in cuprates by non-equilibrium optical spectroscopy. J. Phys. Conf. Ser. 449, 012003 (2013).

    Article  CAS  Google Scholar 

  78. Goldman, N., Budich, J. C. & Zoller, P. Topological quantum matter with ultracold gases in optical lattices. Nat. Phys. 12, 639–645 (2016).

    Article  CAS  Google Scholar 

  79. He, S. et al. Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films. Nat. Mater. 12, 605–610 (2013).

    Article  CAS  Google Scholar 

  80. Lee, J. J. et al. Interfacial mode coupling as the origin of the enhancement of Tc in FeSe films on SrTiO3 . Nature 515, 245–248 (2014).

    Article  CAS  Google Scholar 

  81. Shiogai, J., Ito, Y., Mitsuhashi, T., Nojima, T. & Tsukazaki, A. Electric-field-induced superconductivity in electrochemically etched ultrathin FeSe films on SrTiO3 and MgO. Nat. Phys. 12, 42–46 (2015).

    Article  CAS  Google Scholar 

  82. Lei, B. et al. Evolution of high-temperature superconductivity from a low-Tc phase tuned by carrier concentration in FeSe thin flakes. Phys. Rev. Lett. 116, 077002 (2016).

    Article  CAS  Google Scholar 

  83. Saito, Y. et al. Superconductivity protected by spin–valley locking in ion-gated MoS2 . Nat. Phys. 12, 144–149 (2016).

    Article  CAS  Google Scholar 

  84. Li, L. J. et al. Controlling many-body states by the electric-field effect in a two-dimensional material. Nature 529, 185–189 (2015).

    Article  CAS  Google Scholar 

  85. Bollinger, A. T. et al. Superconductor–insulator transition in La2−xSrxCuO4 at the pair quantum resistance. Nature 472, 458–460 (2011).

    Article  CAS  Google Scholar 

  86. Sherman, D. et al. The Higgs mode in disordered superconductors close to a quantum phase transition. Nat. Phys. 11, 188–192 (2015).

    Article  CAS  Google Scholar 

  87. Matsunaga, R. et al. Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor. Science 345, 1145–1149 (2014).

    Article  CAS  Google Scholar 

  88. Nikuni, T., Oshikawa, M., Oosawa, A. & Tanaka, H. Bose–Einstein condensation of dilute magnons in TlCuCl3 . Phys. Rev. Lett. 84, 5868–5871 (2000).

    Article  CAS  Google Scholar 

  89. Giamarchi, T., Rüegg, C. & Tchernyshyov, O. Bose–Einstein condensation in magnetic insulators. Nat. Phys. 4, 198–204 (2008).

    Article  CAS  Google Scholar 

  90. Jaime, M. et al. Magnetic-field-induced condensation of triplons in Han purple pigment BaCuSi2O6 . Phys. Rev. Lett. 93, 087203 (2004).

    Article  CAS  Google Scholar 

  91. Sebastian, S. E. et al. Dimensional reduction at a quantum critical point. Nature 441, 617–620 (2006).

    Article  CAS  Google Scholar 

  92. Kimura, S. et al. Ferroelectricity by Bose–Einstein condensation in a quantum magnet. Nat. Commun. 7, 12822 (2016).

    Article  CAS  Google Scholar 

  93. Demokritov, S. O. et al. Bose–Einstein condensation of quasi-equilibrium magnons at room temperature under pumping. Nature 443, 430–433 (2006).

    Article  CAS  Google Scholar 

  94. Bozhko, D. A. et al. Supercurrent in a room-temperature Bose-Einstein magnon condensate. Nat. Phys. 12, 1057–1062 (2016).

    Article  CAS  Google Scholar 

  95. Li, J. I. A., Taniguchi, T., Watanabe, K., Hone, J. & Dean, C. R. Excitonic superfluid phase in double bilayer graphene. Nat. Phys. 13, 751–755 (2016).

    Article  CAS  Google Scholar 

  96. Nandi, D., Finck, A. D. K., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Exciton condensation and perfect Coulomb drag. Nature 488, 481–484 (2012).

    Article  CAS  Google Scholar 

  97. Fogler, M. M., Butov, L. V & Novoselov, K. S. High-temperature superfluidity with indirect excitons in van der Waals heterostructures. Nat. Commun. 5, 4555 (2014).

    Article  CAS  Google Scholar 

  98. Wu, F.-C., Xue, F. & MacDonald, A. H. Theory of two-dimensional spatially indirect equilibrium exciton condensates. Phys. Rev. B 92, 165121 (2015).

    Article  CAS  Google Scholar 

  99. Sun, Y. et al. Bose–Einstein condensation of long-lifetime polaritons in thermal equilibrium. Phys. Rev. Lett. 118, 016602 (2017).

    Article  Google Scholar 

  100. Cotleţ, O., Zeytinoğlu, S., Sigrist, M., Demler, E. & Imamoğlu, A. Superconductivity and other collective phenomena in a hybrid Bose–Fermi mixture formed by a polariton condensate and an electron system in two dimensions. Phys. Rev. B 93, 054510 (2016).

    Article  CAS  Google Scholar 

  101. McLeod, A. S. et al. Nanotextured phase coexistence in the correlated insulator V2O3 . Nat. Phys. 13, 80–86 (2016). This paper shows that the insulator-to-metal transition in correlated oxides is associated with the phase separation at nano- and mesoscales.

    Article  CAS  Google Scholar 

  102. Ma, E. Y. et al. Mobile metallic domain walls in an all-in-all-out magnetic insulator. Science 350, 538–541 (2015).

    Article  CAS  Google Scholar 

  103. Mitrano, M. et al. Possible light-induced superconductivity in K3C60 at high temperature. Nature 530, 461–464 (2016). This work is the latest result from the group of A. Cavalleri on transient enhancement of superconducting pairing in unconventional superconductors.

    Article  CAS  Google Scholar 

  104. Kennes, D. M., Wilner, E. Y., Reichman, D. R. & Millis, A. J. Transient superconductivity from electronic squeezing of optically pumped phonons. Nat. Phys. 13, 479–483 (2017).

    Article  CAS  Google Scholar 

  105. Spivak, B. & Kivelson, S. A. Transport in two dimensional electronic micro-emulsions. J. Phys. IV France 131, 255–256 (2005).

    Article  Google Scholar 

  106. Yamaura, J. et al. Tetrahedral Magnetic Order and the Metal-Insulator Transition in the Pyrochlore Lattice of Cd2Os2O7 . Phys. Rev. Lett. 108, 247205 (2012).

    Article  CAS  Google Scholar 

  107. Yamaji, Y. & Imada, M. Metallic interface emerging at magnetic domain wall of antiferromagnetic insulator: fate of extinct Weyl electrons. Phys. Rev. X 4, 021035 (2014).

    Google Scholar 

  108. Yamaji, Y. & Imada, M. Modulated helical metals at magnetic domain walls of pyrochlore iridium oxides. Phys. Rev. B 93, 195146 (2016).

    Article  CAS  Google Scholar 

  109. Nakamura, F. et al. Electric-field-induced metal maintained by current of the Mott insulator Ca2RuO4 . Sci. Rep. 3, 2536 (2013).

    Article  Google Scholar 

  110. Liu, M. K. et al. Photoinduced phase transitions by time-resolved far-infrared spectroscopy in V2O3 . Phys. Rev. Lett. 107, 066403 (2011).

    Article  CAS  Google Scholar 

  111. Kübler, C. et al. Coherent structural dynamics and electronic correlations during an ultrafast insulator-to-metal phase transition in VO2 . Phys. Rev. Lett. 99, 116401 (2007).

    Article  CAS  Google Scholar 

  112. Rini, M. et al. Control of the electronic phase of a manganite by mode-selective vibrational excitation. Nature 449, 72–74 (2007).

    Article  CAS  Google Scholar 

  113. Beaud, P. et al. A time-dependent order parameter for ultrafast photoinduced phase transitions. Nat. Mater. 13, 923–927 (2014).

    Article  CAS  Google Scholar 

  114. Morrison, V. R. et al. A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction. Science 346, 445–448 (2014).

    Article  CAS  Google Scholar 

  115. Han, T.-R. T. et al. Exploration of metastability and hidden phases in correlated electron crystals visualized by femtosecond optical doping and electron crystallography. Sci. Adv. 1, e1400173 (2015).

    Article  Google Scholar 

  116. Beaud, P. et al. Ultrafast structural phase transition driven by photoinduced melting of charge and orbital order. Phys. Rev. Lett. 103, 155702 (2009).

    Article  CAS  Google Scholar 

  117. Nova, T. F. et al. An effective magnetic field from optically driven phonons. Nat. Phys. 13, 132–136 (2017).

    Article  CAS  Google Scholar 

  118. Mankowsky, R. et al. Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa2Cu3O6.5 . Nature 516, 71–73 (2014).

    Article  CAS  Google Scholar 

  119. Babadi, M., Knap, M., Martin, I., Refael, G. & Demler, E. Theory of parametrically amplified electron–phonon superconductivity. Phys. Rev. B 96, 014512 (2017).

    Article  Google Scholar 

  120. Wegkamp, D. et al. Instantaneous band gap collapse in photoexcited monoclinic VO2 due to photocarrier doping. Phys. Rev. Lett. 113, 216401 (2014).

    Article  CAS  Google Scholar 

  121. Popmintchev, T., Chen, M.-C., Arpin, P., Murnane, M. M. & Kapteyn, H. C. The attosecond nonlinear optics of bright coherent X-ray generation. Nat. Photon. 4, 822–832 (2010).

    Article  CAS  Google Scholar 

  122. Rybka, T. et al. Sub-cycle optical phase control of nanotunnelling in the single-electron regime. Nat. Photon. 10, 667–670 (2016).

    Article  CAS  Google Scholar 

  123. Moore, J. E. The birth of topological insulators A primer on topological insulators. Nature 464, 194–198 (2010).

    Article  CAS  Google Scholar 

  124. Jia, S., Xu, S.-Y. & Hasan, M. Z. Weyl semimetals, Fermi arcs and chiral anomalies. Nat. Mater. 15, 1140–1144 (2016).

    Article  CAS  Google Scholar 

  125. Yan, B. & Felser, C. Topological materials: Weyl semimetals. Annu. Rev. Condens. Matter Phys 8, 337–354 (2017).

    Article  Google Scholar 

  126. Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  CAS  Google Scholar 

  127. Beenakker, C. & Kouwenhoven, L. A road to reality with topological superconductors. Nat. Phys. 12, 618–621 (2016).

    Article  CAS  Google Scholar 

  128. Beenakker, C. W. J. Search for Majorana fermions in superconductors. Annu. Rev. Condens. Matter Phys 4, 113–136 (2013).

    Article  CAS  Google Scholar 

  129. Kitagawa, T., Oka, T., Brataas, A., Fu, L. & Demler, E. Transport properties of nonequilibrium systems under the application of light: Photoinduced quantum Hall insulators without Landau levels. Phys. Rev. B 84, 235108 (2011).

    Article  CAS  Google Scholar 

  130. Lindner, N. H., Bergman, D. L., Refael, G. & Galitski, V. Topological Floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013).

    Article  CAS  Google Scholar 

  131. Qian, X., Liu, J., Fu, L. & Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347 (2014).

    Article  CAS  Google Scholar 

  132. Fei, Z. et al. Edge conduction in monolayer WTe2 . Nat. Phys. 13, 677–682 (2017).

    Article  CAS  Google Scholar 

  133. Tang, S. et al. Quantum spin Hall state in monolayer 1T′-WTe2 . Nat. Phys. 13, 683–687 (2017).

    Article  CAS  Google Scholar 

  134. Yu, R. et al. Quantized anomalous Hall effect in magnetic topological insulators. Science 329, 61–64 (2010).

    Article  CAS  Google Scholar 

  135. Chang, C.-Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    Article  CAS  Google Scholar 

  136. Ju, L. et al. Topological valley transport at bilayer graphene domain walls. Nature 520, 650–655 (2015).

    Article  CAS  Google Scholar 

  137. Sie, E. J. et al. Valley-selective optical Stark effect in monolayer WS2 . Nat. Mater. 14, 290–294 (2015).

    Article  CAS  Google Scholar 

  138. Xu, S.-Y. et al. Topological phase transition and texture inversion in a tunable topological insulator. Science 332, 560–564 (2011).

    Article  CAS  Google Scholar 

  139. Moll, P. J. W. et al. Transport evidence for Fermi-arc-mediated chirality transfer in the Dirac semimetal Cd3As2 . Nature 535, 266–270 (2016).

    Article  CAS  Google Scholar 

  140. Hirschberger, M. et al. SI: The chiral anomaly and thermopower of Weyl fermions in the half-Heusler GdPtBi. Nat. Mater. 15, 1161–1165 (2016).

    Article  CAS  Google Scholar 

  141. Wan, X., Turner, A., Vishwanath, A. & Savrasov, S. Y. Electronic structure of pyrochlore iridates: From topological Dirac metal to Mott insulator. Phys. Rev. B 83, 205101 (2011).

    Article  CAS  Google Scholar 

  142. Xu, G., Weng, H., Wang, Z., Dai, X. & Fang, Z. Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4 . Phys. Rev. Lett. 107, 186806 (2011).

    Article  CAS  Google Scholar 

  143. Chang, G. et al. Room-temperature magnetic topological Weyl fermion and nodal line semimetal states in half-metallic Heusler Co2TiX (X=Si, Ge, or Sn). Sci. Rep. 6, 38839 (2016).

    Article  CAS  Google Scholar 

  144. Wang, Z. et al. Time-reversal-breaking Weyl fermions in magnetic Heusler alloys. Phys. Rev. Lett. 117, 236401 (2016).

    Article  CAS  Google Scholar 

  145. Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable Floquet–Weyl semimetals by laser-driving of 3D Dirac materials. Nat. Commun. 8, 13940 (2017).

    Article  CAS  Google Scholar 

  146. Sentef, M. A. et al. Theory of Floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Commun. 6, 7047 (2015).

    Article  CAS  Google Scholar 

  147. Benito, M., Gómez-León, A., Bastidas, V. M., Brandes, T. & Platero, G. Floquet engineering of long-range p-wave superconductivity. Phys. Rev. B 90, 205127 (2014).

    Article  CAS  Google Scholar 

  148. Zhang, X.-X., Ong, T. T. & Nagaosa, N. Theory of photoinduced Floquet Weyl semimetal phases. Phys. Rev. B 94, 235137 (2016).

    Article  Google Scholar 

  149. Claassen, M., Jiang, H.-C., Moritz, B. & Devereaux, T. P. Dynamical time-reversal symmetry breaking and photo-induced chiral spin liquids in frustrated Mott insulators. Preprint at http://arxiv.org/abs/1611.07964 (2016).

  150. Kumar, A. et al. Chiral plasmon in gapped Dirac systems. Phys. Rev. B 93, 041413 (2016).

    Article  CAS  Google Scholar 

  151. Karzig, T., Bardyn, C.-E., Lindner, N. H. & Refael, G. Topological polaritons. Phys. Rev. X 5, 031001 (2015).

    Google Scholar 

  152. Giannetti, C. et al. Ultrafast optical spectroscopy of strongly correlated materials and high-temperature superconductors: a non-equilibrium approach. Adv. Phys. 65, 58–238 (2016).

    Article  CAS  Google Scholar 

  153. Wang, H. et al. Bright high-repetition-rate source of narrowband extreme-ultraviolet harmonics beyond 22 eV. Nat. Commun. 6, 7459 (2015).

    Article  CAS  Google Scholar 

  154. Elsaesser, T. & Woerner, M. Perspective: Structural dynamics in condensed matter mapped by femtosecond x-ray diffraction. J. Chem. Phys. 140, 020901 (2014).

    Article  CAS  Google Scholar 

  155. Zhao, L. et al. Evidence of an odd-parity hidden order in a spin-orbit coupled correlated iridate. Nat. Phys. 12, 32–36 (2015).

    Article  CAS  Google Scholar 

  156. Zhao, L. et al. A global inversion-symmetry-broken phase inside the pseudogap region of YBa2Cu3Oy . Nat. Phys. 13, 250–254 (2017).

    Article  CAS  Google Scholar 

  157. Harter, J., Zhao, Z. Y., Yan, J.-Q., Mandrus, D. G. & Hsieh, D. A parity-breaking electronic nematic phase transition in the spin-orbit coupled metal Cd2Re2O7 . Science 356, 295–299 (2017).

    Article  CAS  Google Scholar 

  158. Bowlan, P. et al. Probing and controlling terahertz-driven structural dynamics with surface sensitivity. Optica 4, 383–387 (2017).

    Article  Google Scholar 

  159. Dean, M. P. M. et al. Ultrafast energy- and momentum-resolved dynamics of magnetic correlations in the photo-doped Mott insulator Sr2IrO4 . Nat. Mater. 15, 601–605 (2016).

    Article  CAS  Google Scholar 

  160. Abreu, E. et al. Dynamic conductivity scaling in photoexcited V2O3 thin films. Phys. Rev. B 92, 085130 (2015).

    Article  CAS  Google Scholar 

  161. Ni, G. X. et al. Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene. Nat. Photon. 10, 244–247 (2016).

    Article  CAS  Google Scholar 

  162. Dönges, S. A. et al. Ultrafast nanoimaging of the photoinduced phase transition dynamics in VO2 . Nano Lett. 16, 3029–3035 (2016).

    Article  CAS  Google Scholar 

  163. Eisele, M. et al. Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution. Nat. Photon. 8, 841–845 (2014).

    Article  CAS  Google Scholar 

  164. Weiner, A. Femtosecond pulse shaping using spatial light modulators. Rev. Sci. Instrum. 71, 1929–1960 (2000).

    Article  CAS  Google Scholar 

  165. Yusupov, R. et al. Coherent dynamics of macroscopic electronic order through a symmetry breaking transition. Nat. Phys. 6, 681–684 (2010).

    Article  CAS  Google Scholar 

  166. Martin, I., Refael, G. & Halperin, B. Topological frequency conversion in strongly driven quantum systems. Preprint at http://arxiv.org/abs/1612.02143v1 (2016).

  167. Cundiff, S. T. & Mukamel, S. Optical multidimensional coherent spectroscopy. Phys. Today 66, 44–49 (July, 2013).

    Article  CAS  Google Scholar 

  168. Riek, C. et al. Direct sampling of electric-field vacuum fluctuations. Science 350, 420–423 (2015).

    Article  CAS  Google Scholar 

  169. Antonius, G. & Louie, S. G. Temperature-induced topological phase transitions: promoted versus suppressed nontrivial topology. Phys. Rev. Lett. 117, 246401 (2016).

    Article  Google Scholar 

  170. Aoki, H. et al. Nonequilibrium dynamical mean-field theory and its applications. Rev. Mod. Phys. 86, 779–837 (2014).

    Article  Google Scholar 

  171. Das Sarma, S., Freedman, M. & Nayak, C. Majorana zero modes and topological quantum computation. npj Quant. Inf. 1, 15001 (2015).

    Article  Google Scholar 

  172. Bradlyn, B. et al. Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals. Science 353, aaf5037 (2016).

    Article  CAS  Google Scholar 

  173. Zhang, J. et al. Observation of a discrete time crystal. Nature 543, 217–220 (2017).

    Article  CAS  Google Scholar 

  174. Choi, S. et al. Observation of discrete time-crystalline order in a disordered dipolar many-body system. Nature 543, 221–225 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Research at Columbia is supported by DE-FG02-00ER45799 (fundamental physics of graphene), NSF DMR1609096 (high-Tc superconductivity), ARO-W911NF-17-1-0543 (correlated oxides), AFOSR FA9550-15-1-0478 (van der Waals heterostructures), ONR N00014-15-1-2671 (graphene-based devices) and NSF-EFRI EFMA 1741660 (topological effects in graphene). D.N.B. is the Gordon and Betty Moore Foundation's EPiQS Initiative Investigator through Grant GBMF4533. Additionally, research at Columbia and UCSD is supported by DE-SC0018218 (ultrafast electrodynamics of superconductors) and DE-SC0012375 (ultrafast dynamics of oxides). Research at Caltech is supported by ARO W911NF-17-1-0204 (hidden order in correlated materials), DOE DE-SC0010533 (topological superconductors). D.H. acknowledges support from the David and Lucile Packard Foundation and the Institute for Quantum Information and Matter, an NSF Physics Frontier Center (PHY-1125565) with support of the Gordon and Betty Moore Foundation (GBMF1250). Additionally, research at Caltech and UCSD is supported by ARO W911NF-16-1-0361 (Floquet engineering and metastable states).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. N. Basov, R. D. Averitt or D. Hsieh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basov, D., Averitt, R. & Hsieh, D. Towards properties on demand in quantum materials. Nature Mater 16, 1077–1088 (2017). https://doi.org/10.1038/nmat5017

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat5017

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing