Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Optical gain in colloidal quantum dots achieved with direct-current electrical pumping


Chemically synthesized semiconductor quantum dots (QDs) can potentially enable solution-processable laser diodes with a wide range of operational wavelengths, yet demonstrations of lasing from the QDs are still at the laboratory stage. An important challenge—realization of lasing with electrical injection—remains unresolved, largely due to fast nonradiative Auger recombination of multicarrier states that represent gain-active species in the QDs. Here we present population inversion and optical gain in colloidal nanocrystals realized with direct-current electrical pumping. Using continuously graded QDs, we achieve a considerable suppression of Auger decay such that it can be outpaced by electrical injection. Further, we apply a special current-focusing device architecture, which allows us to produce high current densities (j) up to 18 A cm−2 without damaging either the QDs or the injection layers. The quantitative analysis of electroluminescence and current-modulated transmission spectra indicates that with j = 3–4 A cm−2 we achieve the population inversion of the band-edge states.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Continuously graded core/shell CdSe/CdxZn1−xSe/ZnSe0.5S0.5 QDs (cg-QDs).
Figure 2: Auger recombination in cg-QDs and their lasing behaviours under optical excitation (room temperature).
Figure 3: cg-QD-LED employing a current-focusing architecture.
Figure 4: Double-band 1S and 1P electroluminescence (EL) from a cg-QD-LED (room temperature).
Figure 5: Optical gain in cg-QD-LED under electrical pumping (room temperature).


  1. 1

    Svelto, O. Principles of Lasers Vol. 1, 5 edn (Springer, 2010).

    Book  Google Scholar 

  2. 2

    Klimov, V. I. et al. Optical gain and stimulated emission in nanocrystal quantum dots. Science 290, 314–317 (2000).

    CAS  Article  Google Scholar 

  3. 3

    Landsberg, P. T. Recombination in Semiconductors (Cambridge Univ. Press, 1991).

    Google Scholar 

  4. 4

    Robel, I., Gresback, R., Kortshagen, U., Schaller, R. D. & Klimov, V. I. Universal size-dependent trend in Auger recombination in direct-gap and indirect-gap semiconductor nanocrystals. Phys. Rev. Lett. 102, 177404 (2009).

    Article  Google Scholar 

  5. 5

    García-Santamaría, F. et al. Suppressed Auger recombination in “Giant” nanocrystals boosts optical gain performance. Nano Lett. 9, 3482–3488 (2009).

    Article  Google Scholar 

  6. 6

    Nasilowski, M., Spinicelli, P., Patriarche, G. & Dubertret, B. Gradient CdSe/CdS quantum dots with room temperature biexciton unity quantum yield. Nano Lett. 15, 3953–3958 (2015).

    CAS  Article  Google Scholar 

  7. 7

    Htoon, H., Hollingsworth, J. A., Dickerson, R. & Klimov, V. I. Effect of zero- to one-dimensional transformation on multiparticle Auger recombination in semiconductor quantum rods. Phys. Rev. Lett. 91, 227401 (2003).

    CAS  Article  Google Scholar 

  8. 8

    Rabouw, F. T. et al. Reduced Auger recombination in single CdSe/CdS nanorods by one-dimensional electron delocalization. Nano Lett. 13, 4884–4892 (2013).

    CAS  Article  Google Scholar 

  9. 9

    Lutich, A. A. et al. Multiexcitonic dual emission in CdSe/CdS tetrapods and nanorods. Nano Lett. 10, 4646–4650 (2010).

    CAS  Article  Google Scholar 

  10. 10

    Cragg, G. E. & Efros, A. L. Suppression of Auger processes in confined structures. Nano Lett. 10, 313–317 (2010).

    CAS  Article  Google Scholar 

  11. 11

    Bae, W. K. et al. Controlled alloying of the core–shell interface in CdSe/CdS quantum dots for suppression of Auger recombination. ACS Nano 7, 3411–3419 (2013).

    CAS  Article  Google Scholar 

  12. 12

    Bae, W. K. et al. Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes. Nat. Commun. 4, 3661 (2013).

    Google Scholar 

  13. 13

    Park, Y.-S., Bae, W. K., Baker, T., Lim, J. & Klimov, V. I. Effect of Auger recombination on lasing in heterostructured quantum dots with engineered core/shell interfaces. Nano Lett. 15, 7319–7328 (2015).

    CAS  Article  Google Scholar 

  14. 14

    Vaxenburg, R., Rodina, A., Lifshitz, E. & Efros, A. L. Biexciton Auger recombination in CdSe/CdS core/shell semiconductor nanocrystals. Nano Lett. 16, 2503–2511 (2016).

    CAS  Article  Google Scholar 

  15. 15

    Park, Y.-S., Bae, W. K., Pietryga, J. M. & Klimov, V. I. Auger recombination of biexcitons and negative and positive trions in individual quantum dots. ACS Nano 8, 7288–7296 (2014).

    CAS  Article  Google Scholar 

  16. 16

    Efros, A. L. et al. Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: dark and bright exciton states. Phys. Rev.B 54, 4843–4856 (1996).

    CAS  Article  Google Scholar 

  17. 17

    Norris, D. J. & Bawendi, M. G. Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots. Phys. Rev. B 53, 16338–16346 (1996).

    CAS  Article  Google Scholar 

  18. 18

    Klimov, V. I. Multicarrier interactions in semiconductor nanocrystals in relation to the phenomena of Auger recombination and carrier multiplication. Annu. Rev. Condens. Matter Phys. 5, 285–316 (2014).

    CAS  Article  Google Scholar 

  19. 19

    Vanmaekelbergh, D. et al. Shape-dependent multiexciton emission and whispering gallery modes in supraparticles of CdSe/multishell quantum dots. ACS Nano 9, 3942–3950 (2015).

    CAS  Article  Google Scholar 

  20. 20

    Gollner, C. et al. Random lasing with systematic threshold behavior in films of CdSe/CdS core/thick-shell colloidal quantum dots. ACS Nano 9, 9792–9801 (2015).

    CAS  Article  Google Scholar 

  21. 21

    Diaconescu, B., Padilha, L. A., Nagpal, P., Swartzentruber, B. S. & Klimov, V. I. Measurement of electronic states of PbS nanocrystal quantum dots using scanning tunneling spectroscopy: the role of parity selection rules in optical absorption. Phys. Rev. Lett. 110, 127406 (2013).

    Article  Google Scholar 

  22. 22

    Dai, X. et al. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515, 96–99 (2014).

    CAS  Article  Google Scholar 

  23. 23

    Kwak, J. et al. Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure. Nano Lett. 12, 2362–2366 (2012).

    CAS  Article  Google Scholar 

  24. 24

    Lim, J. et al. Influence of shell thickness on the performance of light-emitting devices based on CdSe/Zn1−XCdXS core/shell heterostructured quantum dots. Adv. Mater. 26, 8034–8040 (2014).

    CAS  Article  Google Scholar 

  25. 25

    Klimov, V. I. Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals. J. Phys. Chem. B 104, 6112–6123 (2000).

    CAS  Article  Google Scholar 

  26. 26

    Crooker, S. A., Barrick, T., Hollingsworth, J. A. & Klimov, V. I. Multiple temperature regimes of radiative decay in CdSe nanocrystal quantum dots: intrinsic limits to the dark-exciton lifetime. Appl. Phys. Lett. 82, 2793–2795 (2003).

    CAS  Article  Google Scholar 

  27. 27

    Joshi, A., Narsingi, K. Y., Manasreh, M. O., Davis, E. A. & Weaver, B. D. Temperature dependence of the band gap of colloidal CdSe/ZnS core/shell nanocrystals embedded into an ultraviolet curable resin. Appl. Phys. Lett. 89, 131907 (2006).

    Article  Google Scholar 

Download references


V.I.K. and Y.-S.P. were supported by the Chemical Sciences, Biosciences and Geosciences Division, Office of Basic Energy Sciences, Office of Science, US Department of Energy. J.L. acknowledges support by the Laboratory Directed Research and Development program at Los Alamos National Laboratory.

Author information




J.L. synthesized the QDs, designed the ‘current-focusing’ device architecture, and fabricated and characterized the QD-LEDs. Y.-S.P. conducted spectroscopic studies of the QDs and measurements of their lasing characteristics. J.L. and Y.-S.P. provided equal contributions to this study. V.I.K. initiated the studies, developed the correlated electron–hole injection model, and wrote the manuscript with contributions from other co-authors.

Corresponding author

Correspondence to Victor I. Klimov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 13223 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lim, J., Park, YS. & Klimov, V. Optical gain in colloidal quantum dots achieved with direct-current electrical pumping. Nature Mater 17, 42–49 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing