Quantum materials discovery from a synthesis perspective

Abstract

The synthesis of bulk crystals, thin films and nanostructures plays a seminal role in expanding the frontiers of quantum materials. Crystal growers accomplish this by creating materials aimed at harnessing the complex interplay between quantum wavefunctions and various factors such as dimensionality, topology, Coulomb interactions and symmetry. This Review provides a synthesis perspective on how this discovery of quantum materials takes place. After introducing the general paradigms that arise in this context, we provide a few examples to illustrate how thin-film growers in particular exploit quantum confinement, topology, disorder and interfacial heterogeneity to realize new quantum materials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Different approaches to the synthesis of quantum materials, and their characteristic impact.
Figure 2: The development of ultrahigh-mobility 2DEGs.
Figure 3: MBE growth of bi-chalcogenide topological insulator films.
Figure 4: Structure, electrical transport and scanning SQUID imaging of a quantum anomalous Hall insulator (Cr-doped (Bi,Sb)2Te3).
Figure 5: Emergent high-temperature superconductivity at the SrTiO3/FeSe interface.

References

  1. 1

    Basic Research Needs Workshop on Quantum Materials for Energy Relevant Technology (US Department of Energy, 2016); https://science.energy.gov//media/bes/pdf/reports/2016/BRNQM_rpt_Final_12-09-2016.pdf

  2. 2

    von Klitzing, K., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980).

    CAS  Article  Google Scholar 

  3. 3

    Tsui, D. C., Stormer, H. L. & Gossard A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982).

    CAS  Article  Google Scholar 

  4. 4

    Bednorz, J. G. & Muller, K. A. Possible high-TC superconductivity in the Ba–La–Cu–O system. Z. Phys. B 64, 189–193 (1986).

    CAS  Article  Google Scholar 

  5. 5

    Mackenzie, A. P. & Maeno, Y. The superconductivity of Sr2RuO4 and the physics of spin-triplet pairing. Rev. Mod. Phys. 75, 657–712 (2003).

    CAS  Article  Google Scholar 

  6. 6

    König, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

    Article  CAS  Google Scholar 

  7. 7

    Chang, C. Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    CAS  Article  Google Scholar 

  8. 8

    Ohtomo, A. & Hwang, H. Y. A high mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423–426 (2004).

    CAS  Article  Google Scholar 

  9. 9

    Reyren, N. et al. Superconducting interfaces between insulating oxides. Science 317, 1196–1199 (2007).

    CAS  Article  Google Scholar 

  10. 10

    Brinkman, A. et al. Magnetic effects at the interface between non-magnetic oxides. Nat. Mater. 6, 493–496 (2007).

    CAS  Article  Google Scholar 

  11. 11

    Li, L., Richter, C., Mannhart, J. & Ashoori, R. C. Coexistence of magnetic order and two-dimensional superconductivity at LaAlO3/SrTiO3 interfaces. Nat. Phys. 7, 762–766 (2011).

    CAS  Article  Google Scholar 

  12. 12

    Bert, J. A. et al. Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO3/SrTiO3 interface. Nat. Phys. 7, 767–771 (2011).

    CAS  Article  Google Scholar 

  13. 13

    Wang, Q. Y. et al. Interface induced high temperature superconductivity in single unit-cell FeSe films on SrTiO3 . Chin. Phys. Lett. 29, 037402 (2012).

    Article  CAS  Google Scholar 

  14. 14

    Ge, J. F. et al. Superconductivity above 100 K in single layer FeSe films on doped SrTiO3 . Nat. Mater. 14, 285–289 (2015).

    CAS  Article  Google Scholar 

  15. 15

    Imada, M., Fujimori, A. & Tokura, Y. Metal–insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998).

    CAS  Article  Google Scholar 

  16. 16

    Shimizu, Y. et al. Spin liquid state in an organic Mott insulator with a triangular lattice. Phys. Rev. Lett. 91, 107001 (2003).

    CAS  Article  Google Scholar 

  17. 17

    Keller, H. Bussmann-Holder, A. & Müller, K. A. Jahn–Teller physics and high TC superconductivity. Mater. Today 11, 38–46 (September, 2008).

    CAS  Article  Google Scholar 

  18. 18

    Dingle, R., Stormer, H. L. & Gossard, A. C. Electron mobilities in modulation-doped semiconductor heterojunction superlattices. Appl. Phys. Lett. 33, 665–667 (1978).

    CAS  Article  Google Scholar 

  19. 19

    Weisbuch, C. Quantum Semiconductor Structures: Fundamentals and Applications (Academic, 1991).

    Google Scholar 

  20. 20

    Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    CAS  Article  Google Scholar 

  21. 21

    Qi, X. L. & Zhang, S. C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    CAS  Article  Google Scholar 

  22. 22

    Basov, D. N., Averitt, R. D. & Hsieh D. Controlling the properties of quantum materials. Nat. Mater. 16, 1078–1089 (2017).

    Article  CAS  Google Scholar 

  23. 23

    Moler, K. A. Imaging quantum materials. Nat. Mater. 16, 1049–1052 (2017).

    CAS  Article  Google Scholar 

  24. 24

    Keimer, B. & Moore, J. E. The physics of quantum materials. Nat. Phys. http://doi.org/10.1038/nphys4302 (2017).

    CAS  Article  Google Scholar 

  25. 25

    Tokura, Y., Kawasaki, M. & Nagaosa, N. Emergent functions of quantum materials. Nat. Phys. http://doi.org/10.1038/nphys4274 (2017).

    CAS  Article  Google Scholar 

  26. 26

    Gedik, N. & Vishik, I. Photoemission of quantum materials. Nat. Phys. http://doi.org/10.1038/nphys4273 (2017).

    CAS  Article  Google Scholar 

  27. 27

    Gardner, G. C., Fallahi, S., Watson, J. D. & Manfra, M. J. Modified MBE hardware and techniques and role of gallium purity for attainment of two dimensional electron gas mobility > 35 × 106 cm2/V.s in AlGaAs/GaAs quantum wells grown by MBE. J. Cryst. Growth 441, 71–77 (2016).

    CAS  Article  Google Scholar 

  28. 28

    Pfeiffer, L. & West, K. W. The role of MBE in recent quantum Hall effect physics discoveries. Physica E 20, 57–64 (2003).

    CAS  Article  Google Scholar 

  29. 29

    Jain, J. K. The composite fermion: a quantum particle and its quantum fluids. Phys. Today 53, 39–45 (April, 2000).

    CAS  Article  Google Scholar 

  30. 30

    Morales, A. M. & Lieber, C. M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279, 208–211 (1998).

    CAS  Article  Google Scholar 

  31. 31

    Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996).

    CAS  Article  Google Scholar 

  32. 32

    Chappert, C., Fert, A., & Van Dau, Frederick Nguyen . The emergence of spin electronics in data storage. Nat. Mater. 6, 813–823 (2007).

    CAS  Article  Google Scholar 

  33. 33

    Awschalom, D. D. & Samarth, N. Spin dynamics and quantum transport in magnetic semiconductor quantum structures. J. Magn. Magn. Mater. 200, 130–147 (1999).

    CAS  Article  Google Scholar 

  34. 34

    MacDonald, A. H., Schiffer, P. & Samarth, N. Ferromagnetic semiconductors: moving beyond (Ga,Mn)As. Nat. Mater. 4, 195–202 (2005).

    CAS  Article  Google Scholar 

  35. 35

    De Jongh, L. J. & Miedema, A. R. Experiments on simple magnetic model systems. Adv. Phys. 50, 947–1170 (2001).

    Article  Google Scholar 

  36. 36

    Butler, S. Z. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7, 2898–2926 (2013).

    CAS  Article  Google Scholar 

  37. 37

    Mak, K. F. & Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photon. 10, 216–226 (2016).

    CAS  Article  Google Scholar 

  38. 38

    Lu, J. M. et al. Evidence for two-dimensional Ising superconductivity in gated MoS2 . Science 350, 1353–1357 (2015).

    CAS  Article  Google Scholar 

  39. 39

    Xi, X. et al. Ising pairing in superconducting NbSe2 atomic layers. Nat. Phys. 12, 139–144 (2015).

    Article  CAS  Google Scholar 

  40. 40

    Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

    CAS  Article  Google Scholar 

  41. 41

    Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    CAS  Article  Google Scholar 

  42. 42

    Lee, J. et al. Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 344, 286–289 (2014).

    CAS  Article  Google Scholar 

  43. 43

    Kang, K. et al. High-mobility threeatomthick semiconducting films with wafer scale homogeneity. Nature 520, 656–660 (2015).

    CAS  Article  Google Scholar 

  44. 44

    Jariwala, D., Marks, T. J. & Hersam, M. C. Mixed-dimensional van der Waals heterostructures. Nat. Mater. 16, 170–181 (2017).

    CAS  Article  Google Scholar 

  45. 45

    Thouless, D. J., Kohmoto, M., Nightingale, M. P. & den Nijs, M. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405–408 (1982).

    CAS  Article  Google Scholar 

  46. 46

    Zhang, H. et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 5, 438–442 (2009).

    CAS  Article  Google Scholar 

  47. 47

    Dzero, M., Sun, K., Galitski, V. & Coleman, P. Topological Kondo insulators. Phys. Rev. Lett. 104, 106408 (2010).

    Article  CAS  Google Scholar 

  48. 48

    Fu, L. Topological crystalline insulators. Phys. Rev. Lett. 106, 106802 (2011).

    Article  CAS  Google Scholar 

  49. 49

    Young, S. M. et al. Dirac semimetal in three dimensions. Phys. Rev. Lett. 108, 140405 (2012).

    CAS  Article  Google Scholar 

  50. 50

    Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

    Article  CAS  Google Scholar 

  51. 51

    Huang, S. M. et al. A Weyl fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class. Nat. Commun. 6, 7373 (2015).

    CAS  Article  Google Scholar 

  52. 52

    Weng, H. et al. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys. Rev. X 5, 011029 (2015).

    Google Scholar 

  53. 53

    Hsieh, D. et al. A topological Dirac insulator in a quantum spin Hall phase. Nature 452, 970–974 (2008).

    CAS  Article  Google Scholar 

  54. 54

    Tanaka, Y. et al. Experimental realization of a topological crystalline insulator in SnTe. Nat. Phys. 8, 800–803 (2012).

    CAS  Article  Google Scholar 

  55. 55

    Liu, Z. K. et al. A stable three-dimensional topological Dirac semimetal Cd3As2 . Nat. Mater. 13, 677–681 (2014).

    CAS  Article  Google Scholar 

  56. 56

    Borisenko, S. et al. Experimental realization of a three-dimensional Dirac semimetal. Phys. Rev. Lett. 113, 027603 (2014).

    Article  CAS  Google Scholar 

  57. 57

    Neupane, M. et al. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2 . Nat. Commun. 5, 3786 (2014).

    CAS  Article  Google Scholar 

  58. 58

    Xu, S. Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015).

    CAS  Article  Google Scholar 

  59. 59

    Heremans, J. P., Cava, R. J. & Samarth, N. Tetradymites as thermoelectrics and topological insulators. Nat. Rev. Mater. 2, 17049 (2017).

    CAS  Article  Google Scholar 

  60. 60

    Richardella, A. et al. Characterizing the structure of topological insulator thin films. APL Mater. 3, 083303 (2015).

    Article  CAS  Google Scholar 

  61. 61

    Schreyeck, S. et al. Molecular beam epitaxy of high structural quality Bi2Se3 on lattice matched InP (111) substrates. Appl. Phys. Lett. 102, 041914 (2013).

    Article  CAS  Google Scholar 

  62. 62

    Ren, Z. et al. Large bulk resistivity and surface quantum oscillations in the topological insulator Bi2Te2Se. Phys. Rev. B 82, 241306 (2010).

    Article  CAS  Google Scholar 

  63. 63

    Jia, S. et al. Low carrier concentration crystals of the topological insulator Bi2Te2Se. Phys. Rev. B 84, 235206 (2011).

    Article  CAS  Google Scholar 

  64. 64

    Arakane, T. et al. Tunable Dirac cone in the topological insulator Bi2−xSbxTe3−ySey . Nat. Commun. 3, 1639 (2011).

    Google Scholar 

  65. 65

    Xu, Y. et al. Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator. Nat. Phys. 10, 956–963 (2014).

    CAS  Article  Google Scholar 

  66. 66

    Zhang, J. et al. Band structure engineering in (Bi1−xSbx)2Te3 ternary topological insulators. Nat. Commun. 2, 574 (2011).

    Article  CAS  Google Scholar 

  67. 67

    Koirala, N. et al. Record surface state mobility and quantum Hall effect in topological insulator thin films via interface engineering. Nano Lett. 15, 8245–8249 (2015).

    CAS  Article  Google Scholar 

  68. 68

    Wu, L. et al. Quantized Faraday and Kerr rotation and axion electrodynamics of a 3D topological insulator. Science 354, 1124–1127 (2016).

    CAS  Article  Google Scholar 

  69. 69

    Arguello, C. J. et al. Quasiparticle interference, quasiparticle interactions, and the origin of the charge density wave in 2H–NbSe2 . Phys. Rev. Lett. 114, 037001 (2015).

    CAS  Article  Google Scholar 

  70. 70

    Kobayashi, M. et al. Critical test for Altshuler–Aronov theory: evolution of the density of states singularity in double perovskite Sr2FeMoO6 with controlled disorder. Phys. Rev. Lett. 98, 246401 (2007).

    CAS  Article  Google Scholar 

  71. 71

    Mikheev, E. et al. Tuning bad metal and non-Fermi liquid behavior in a Mott material: rare-earth nickelate thin films. Sci. Adv. 1, e1500797 (2015).

    Article  CAS  Google Scholar 

  72. 72

    Qi, X., Hughes, T. L. & Zhang, S. Topological field theory of time-reversal invariant insulators. Phys. Rev. B 78, 195424 (2008).

    Article  CAS  Google Scholar 

  73. 73

    Chen, Y. L. et al. Massive Dirac fermion on the surface of a magnetically doped topological insulator. Science 329, 659–662 (2010).

    CAS  Article  Google Scholar 

  74. 74

    Xu, S. Y. et al. Hedgehog spin texture and Berry's phase tuning in a magnetic topological insulator. Nat. Phys. 8, 616–622 (2012).

    CAS  Article  Google Scholar 

  75. 75

    Sanchez-Barriga, J. et al. Nonmagnetic band gap at the Dirac point of the magnetic topological. Nat. Commun. 7, 10559 (2016).

    CAS  Article  Google Scholar 

  76. 76

    Yu, R. et al. Quantized anomalous Hall effect in magnetic topological insulators. Science 329, 61–64 (2010).

    CAS  Article  Google Scholar 

  77. 77

    Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: condensed-matter realization of the 'parity anomaly'. Phys. Rev. Lett. 61, 2015–2018 (1988).

    CAS  Article  Google Scholar 

  78. 78

    Chang, C. Z. et al. High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator. Nat. Mater. 14, 473–477 (2015).

    CAS  Article  Google Scholar 

  79. 79

    Chang, C. Z. et al. Zero-Field dissipationless chiral edge transport and the nature of dissipation in the quantum anomalous Hall state. Phys. Rev. Lett. 115, 057206 (2015).

    Article  CAS  Google Scholar 

  80. 80

    Checkelsky, J. G. et al. Trajectory of the anomalous Hall effect towards the quantized state in a ferromagnetic topological insulator. Nat. Phys. 10, 731–736 (2014).

    CAS  Article  Google Scholar 

  81. 81

    Kou, X. et al. Scale-invariant quantum anomalous Hall effect in magnetic topological insulators beyond the two-dimensional limit. Phys. Rev. Lett. 113, 137201 (2014).

    Article  CAS  Google Scholar 

  82. 82

    Bestwick, A. J. et al. Precise quantization of the anomalous Hall effect near zero magnetic field. Phys. Rev. Lett. 114, 187201 (2015).

    CAS  Article  Google Scholar 

  83. 83

    Kandala, A. et al. Giant anisotropic magnetoresistance in a quantum anomalous Hall insulator. Nat. Commun. 6, 7434 (2015).

    Article  Google Scholar 

  84. 84

    Liu, M. et al. Large discrete jumps observed in the transition between Chern states in a ferromagnetic topological insulator. Sci. Adv. 2, e1600167 (2016).

    Article  CAS  Google Scholar 

  85. 85

    Lachman, E. O. et al. Visualization of superparamagnetic dynamics in magnetic topological insulators. Sci. Adv. 1, e1500740 (2015).

    Article  Google Scholar 

  86. 86

    Winnerlein, M. et al. Epitaxy and structural properties of (V,Bi,Sb)2Te3 layers exhibiting the quantum anomalous Hall effect. Phys. Rev. Mater. 1, 011201 (2017).

    Article  Google Scholar 

  87. 87

    Mogi, M. et al. Magnetic modulation doping in topological insulators toward higher-temperature quantum anomalous Hall effect. Appl. Phys. Lett. 107, 182401 (2015).

    Article  CAS  Google Scholar 

  88. 88

    Tang, C. et al. Above 400-K robust perpendicular ferromagnetic phase in a topological insulator. Sci. Adv. 3, e1700307 (2017).

    Article  CAS  Google Scholar 

  89. 89

    Mellnik, A. R. et al. Spin-transfer torque generated by a topological insulator. Nature 511, 449–451 (2014).

    CAS  Article  Google Scholar 

  90. 90

    Fan, Y. et al. Magnetization switching through giant spin–orbit torque in a magnetically doped topological insulator heterostructure. Nat. Mater. 13, 699–704 (2014).

    CAS  Article  Google Scholar 

  91. 91

    De Gennes, P. G. Boundary effects in superconductors. Rev. Mod. Phys. 36, 225–237 (1964).

    CAS  Article  Google Scholar 

  92. 92

    Pannetier, B. & Courtois, H. Andreev reflection and proximity effect. J. Low Temp. Phys. 118, 599–615 (2000).

    CAS  Article  Google Scholar 

  93. 93

    Eschrig, M. Spin-polarized supercurrents for spintronics. Phys. Today 64, 43–47 (January, 2011).

    CAS  Article  Google Scholar 

  94. 94

    Zhang, D. M. et al. Superconducting proximity effect and possible evidence for Pearl vortices in a candidate topological insulator. Phys. Rev. B 84, 165120 (2011).

    Article  CAS  Google Scholar 

  95. 95

    Sacépé, B. et al. Gate-tuned normal and superconducting transport at the surface of a topological insulator. Nat. Commun. 2, 575 (2011).

    Article  CAS  Google Scholar 

  96. 96

    Hellman, F. et al. Interface-induced phenomena in magnetism. Rev. Mod. Phys. 89, 25006 (2017).

    Article  Google Scholar 

  97. 97

    Wang, Z. et al. Proximity-Induced ferromagnetism in graphene revealed by the anomalous Hall effect. Phys. Rev. Lett. 114, 016603 (2015).

    Article  CAS  Google Scholar 

  98. 98

    Hwang, H. Y. et al. Emergent phenomena at oxide interfaces. Nat. Mater. 11, 103–113 (2012).

    CAS  Article  Google Scholar 

  99. 99

    Ahadi, K. & Stemmer, S. Novel metal–insulator transition at the SmTiO3/SrTiO3 interface. Phys. Rev. Lett. 118, 236803 (2017).

    Article  Google Scholar 

  100. 100

    Yeats, A. L. et al. Persistent optical gating of a topological insulator. Sci. Adv. 1, e1500640 (2015).

    Article  CAS  Google Scholar 

  101. 101

    Yeats, A. L. et al. Local optical control of ferromagnetism and chemical potential in a topological insulator. Proc. Natl Acad. Sci. USA 114, 10379–10383 (2017).

    CAS  Article  Google Scholar 

  102. 102

    Lee, J. J. et al. Interfacial mode coupling as the origin of the enhancement of TC in FeSe films on SrTiO3 . Nature 515, 245–248 (2014).

    CAS  Article  Google Scholar 

  103. 103

    Gambetta, J. M., Chow, J. M. & Steffen, M. Building logical qubits in a superconducting quantum computing system. NPJ Quant. Inf. 3, 2 (2017).

    Article  Google Scholar 

  104. 104

    Fuechsle, M. et al. A single-atom transistor. Nat. Nano. 7, 242–246 (2012).

    CAS  Article  Google Scholar 

  105. 105

    Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005).

    CAS  Article  Google Scholar 

  106. 106

    Majer, J. et al. Coupling superconducting qubits via a cavity bus. Nature 449, 443–447 (2007).

    CAS  Article  Google Scholar 

  107. 107

    Mourik, V. et al. Signatures of Majorana fermions in hybrid superconductor–semiconductor nanowire devices. Science 336, 1003–1007 (2012).

    CAS  Article  Google Scholar 

  108. 108

    Andrich, P. et al. Long-range spin wave mediated control of defect qubits in nanodiamonds. NPJ Quant. Inf. 3, 28 (2017).

    Article  Google Scholar 

  109. 109

    Ramesh, R. & Spaldin, N. A. Multiferroics: progress and prospects in thin films. Nat. Mater. 6, 21–29 (2007).

    CAS  Article  Google Scholar 

  110. 110

    Dellas, N. et al. Electron microscopy of GaAs/MnAs core/shell nanowires. Appl. Phys. Lett. 97, 072505 (2010).

    Article  CAS  Google Scholar 

  111. 111

    Ortmann, F., Roche, S., Valenzuela, S. O. & Molenkamp, L. W. (eds) Topological Insulators: Fundamentals and Perspectives Ch. 12 (Wiley, 2015).

    Google Scholar 

  112. 112

    Zhang, D. et al. Interplay between ferromagnetism, surface states, and quantum corrections in a magnetically doped topological insulator. Phys. Rev. B 86, 205127 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks A. Richardella and J. Kally for the unpublished atomic force microscopy and transmission electron microscopy data shown in this Review. This work is supported by the Pennsylvania State University 2D Crystal Consortium—Materials Innovation Platform (2DCC-MIP), funded through National Science Foundation Cooperative Agreement DMR-1539916. The author also acknowledges support from the National Science Foundation (DMR-1306510), the Office of Naval Research (N00014-15-1-2370, N00014-15-1-2675), the Army Research Office Multidisciplinary University Research Initiative (W911NF-12-1-0461) and C-SPIN, one of six centres of STARnet, a Semiconductor Research Corporation programme, sponsored by MARCO and DARPA.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nitin Samarth.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Samarth, N. Quantum materials discovery from a synthesis perspective. Nature Mater 16, 1068–1076 (2017). https://doi.org/10.1038/nmat5010

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing