Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Continuous-wave infrared optical gain and amplified spontaneous emission at ultralow threshold by colloidal HgTe quantum dots

Abstract

Colloidal quantum dots (QDs) raise more and more interest as solution-processable and tunable optical gain materials. However, especially for infrared active QDs, optical gain remains inefficient. Since stimulated emission involves multifold degenerate band-edge states, population inversion can be attained only at high pump power and must compete with efficient multi-exciton recombination. Here, we show that mercury telluride (HgTe) QDs exhibit size-tunable stimulated emission throughout the near-infrared telecom window at thresholds unmatched by any QD studied before. We attribute this unique behaviour to surface-localized states in the bandgap that turn HgTe QDs into 4-level systems. The resulting long-lived population inversion induces amplified spontaneous emission under continuous-wave optical pumping at power levels compatible with solar irradiation and direct current electrical pumping. These results introduce an alternative approach for low-threshold QD-based gain media based on intentional trap states that paves the way for solution-processed infrared QD lasers and amplifiers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural and linear optical properties of HgTe quantum dots (QDs).
Figure 2: Ultrafast spectroscopy.
Figure 3: Optical gain in hybrid PMMA-1%HgTe nanocomposites under continuous-wave (CW) excitation at 447 nm.
Figure 4: HgTe gain model and surface chemistry.

Similar content being viewed by others

References

  1. Yin, Y. & Alivisatos, P. Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 437, 664–670 (2005).

    Article  CAS  Google Scholar 

  2. Kovalenko, M. V. et al. Prospects of nanoscience with nanocrystals. ACS Nano 9, 1012–1057 (2015).

    Article  CAS  Google Scholar 

  3. Keuleyan, S., Lhuillier, E., Brajuskovic, V. & Guyot-Sionnest, P. Mid-infrared HgTe colloidal quantum dot photodetectors. Nat. Photon. 5, 489–493 (2011).

    Article  CAS  Google Scholar 

  4. Bao, J. & Bawendi, M. G. A colloidal quantum dot spectrometer. Nature 523, 67–70 (2015).

    Article  CAS  Google Scholar 

  5. Wang, X. et al. Tandem colloidal quantum dot solar cells employing a graded recombination layer. Nat. Photon. 5, 480–484 (2011).

    Article  CAS  Google Scholar 

  6. Kim, T. et al. Full-colour quantum dot displays fabricated by transfer printing. Nat. Photon. 5, 176–182 (2011).

    Article  CAS  Google Scholar 

  7. Beard, M. C. et al. Comparing multiple exciton generation in quantum dots to impact ionization in bulk semiconductors: implications for enhancement of solar energy conversion. Nano Lett. 10, 3019–3027 (2010).

    Article  CAS  Google Scholar 

  8. Galland, C. et al. Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots. Nature 479, 203–207 (2011).

    Article  CAS  Google Scholar 

  9. De Geyter, B. et al. The different nature of band edge absorption and emission in colloidal PbSe/CdSe core/shell quantum dots. ACS Nano 5, 58–66 (2011).

    Article  CAS  Google Scholar 

  10. Norris, D. J., Efros, A. L. & Erwin, S. C. Doped nanocrystals. Science 319, 1776–1779 (2008).

    Article  CAS  Google Scholar 

  11. Aubert, T. et al. Homogeneously alloyed CdSeS quantum dots: an efficient synthesis for full optical tunability. Chem. Mater. 25, 2388–2390 (2013).

    Article  CAS  Google Scholar 

  12. Nurmikko, A. What future for quantum dot-based light emitters? Nat. Nanotech. 10, 1001–1004 (2015).

    Article  CAS  Google Scholar 

  13. Jenkins, A. Silicon lasers: the final frontier. Nat. Photon. 1, 240 (2007).

    Article  Google Scholar 

  14. Simply silicon. Nat. Photon. 4, 491 (2010).

  15. Chen, R. et al. Nanolasers grown on silicon. Nat. Photon. 5, 170–175 (2011).

    Article  CAS  Google Scholar 

  16. Wang, Z. et al. Room temperature InP DFB laser array directly grown on (001) silicon. Nat. Photon. 9, 837–842 (2015).

    Article  CAS  Google Scholar 

  17. Franzo, G., Priolo, F., Coffa, S., Polman, A. & Carnera, A. Room-temperature electroluminescence from Er-doped crystalline Si. Appl. Phys. Lett. 64, 2235–2237 (1994).

    Article  CAS  Google Scholar 

  18. Daldosso, N. et al. Erbium and silicon nanocrystals for light amplification. Conf. Proc.—Lasers and Electro-Optics Society Annual Meeting-LEOS 933–934 (2007).

    Google Scholar 

  19. Geiger, R. et al. Analysis of enhanced light emission from highly strained germanium microbridges. Nat. Photon. 7, 466–472 (2013).

    Article  Google Scholar 

  20. Xie, W. et al. On-chip integrated quantum-dot silicon-nitride microdisk lasers. Adv. Mater. 29, 1604866 (2017).

    Article  Google Scholar 

  21. Klimov, V. I. et al. Optical gain and stimulated emission in nanocrystal quantum dots. Science 290, 314–317 (2000).

    Article  CAS  Google Scholar 

  22. Klimov, V. I. et al. Single-exciton optical gain in semiconductor nanocrystals. Nature 447, 441–446 (2007).

    Article  CAS  Google Scholar 

  23. Dang, C. et al. Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films. Nat. Nanotech. 7, 335–339 (2012).

    Article  CAS  Google Scholar 

  24. Schaller, R. D., Petruska, M. a. & Klimov, V. I. Tunable near-infrared optical gain and amplified spontaneous emission using PbSe nanocrystals. J. Phys. Chem. B 107, 13765–13768 (2003).

    Article  CAS  Google Scholar 

  25. Grim, J. Q. et al. Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells. Nat. Nanotech. 9, 891–895 (2014).

    Article  CAS  Google Scholar 

  26. Klimov, V. I. Quantization of multiparticle auger rates in semiconductor quantum dots. Science 287, 1011–1013 (2000).

    Article  CAS  Google Scholar 

  27. Chen, Y. et al. Flexible distributed-feedback colloidal quantum dot laser. Appl. Phys. Lett. 99, 241103 (2011).

    Article  Google Scholar 

  28. García-Santamaría, F. et al. Suppressed auger recombination in ‘giant’ nanocrystals boosts optical gain performance. Nano Lett. 9, 3482–3488 (2009).

    Article  Google Scholar 

  29. Fan, F. et al. Continuous-wave lasing in colloical quantum dot solids enabled by facet-selective epitaxy. Nature 544, 75–79 (2017).

    Article  CAS  Google Scholar 

  30. Caruge, J. M., Halpert, J. E., Wood, V., Bulović, V. & Bawendi, M. G. Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers. Nat. Photon. 2, 247–250 (2008).

    Article  CAS  Google Scholar 

  31. Keuleyan, S., Kohler, J. & Guyot-Sionnest, P. Photoluminescence of mid-infrared HgTe colloidal quantum dots. J. Phys. Chem. C 118, 2749–2753 (2014).

    Article  CAS  Google Scholar 

  32. Keuleyan, S., Lhuillier, E. & Guyot-Sionnest, P. Synthesis of colloidal HgTe quantum dots for narrow mid-IR emission and detection. J. Am. Chem. Soc. 133, 16422–16424 (2011).

    Article  CAS  Google Scholar 

  33. Kim, S. et al. Bandgap engineered monodisperse and stable mercury telluride quantum dots and their application for near-infrared photodetection. J. Mater. Chem. 21, 15232–15236 (2011).

    Article  CAS  Google Scholar 

  34. Allan, G. & Delerue, C. Tight-binding calculations of the optical properties of HgTe nanocrystals. Phys. Rev. B 86, 165437 (2012).

    Article  Google Scholar 

  35. Keuleyan, S. E., Guyot-sionnest, P., Delerue, C. & Allan, G. Mercury telluride colloidal quantum dots: electronic structure, size-dependent spectra, and photocurrent detection up to 12 μm. ACS Nano 8, 8676–8682 (2014).

    Article  CAS  Google Scholar 

  36. Hens, Z. & Moreels, I. Light absorption by colloidal semiconductor quantum dots. J. Mater. Chem. 22, 10406–10415 (2012).

    Article  CAS  Google Scholar 

  37. Kittel, C. Introduction to Solid State Physics (John Wiley, 2005).

    Google Scholar 

  38. Jiang, S. B. et al. Er3+-doped phosphate glasses for fiber amplifiers with high gain per unit length. J. Non-Cryst. Solids 263, 364–368 (2000).

    Article  Google Scholar 

  39. Pietryga, M. et al. Spectroscopic and device aspects of nanocrystal quantum dots. Chem. Rev. 116, 10513–10622 (2016).

    Article  CAS  Google Scholar 

  40. Geiregat, P., Allan, G., Hens, Z. & Delerue, C. Single-exciton optical gain in semiconductor nanocrystals: positive role of electron-phonon coupling. Phys. Rev. B 93, 115416 (2016).

    Article  Google Scholar 

  41. Viswanatha, R., Brovelli, S., Pandey, A., Crooker, S. & aKlimov, V. I. Copper-doped inverted core/shell nanocrystals with ‘permanent’ optically active holes. Nano Lett. 11, 4753–4758 (2011).

    Article  CAS  Google Scholar 

  42. Boehme, S. C. et al. Density of trap states and Auger-mediated electron trapping in CdTe quantum-dot solids. Nano Lett. 15, 3056–3066 (2015).

    Article  CAS  Google Scholar 

  43. De Roo, J., Van Driessche, I., Martins, J. C. & Hens, Z. Colloidal metal oxide nanocrystal catalysis by sustained chemically driven ligand displacement. Nat. Mater. 15, 517–521 (2016).

    Article  CAS  Google Scholar 

  44. Hassinen, A. et al. Short-chain alcohols strip X-type ligands and quench the luminescence of PbSe and CdSe quantum dots, acetonitrile does not. J. Am. Chem. Soc. 134, 20705–20712 (2012).

    Article  CAS  Google Scholar 

  45. Anderson, N. C., Hendricks, M. P., Choi, J. J. & Owen, J. S. Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: spectroscopic observation of facile metal-carboxylate displacement and binding. J. Am. Chem. Soc. 135, 18536–18548 (2013).

    Article  CAS  Google Scholar 

  46. Houtepen, A., Hens, Z., Owen, J. S. & Infante, I. On the origin of surface traps in colloidal II–VI semiconductor nanocrystals. Chem. Mater. 29, 752–761 (2017).

    Article  CAS  Google Scholar 

  47. Kim, T.-H. et al. Full-colour quantum dot displays fabricated by transfer printing. Nat. Photon. 5, 176–182 (2011).

    Article  CAS  Google Scholar 

  48. Kwak, J. et al. Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure. Nano Lett. 12, 2362–2366 (2012).

    Article  CAS  Google Scholar 

  49. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  50. Iannuzzi, M., Schiffmann, F. & Vandevondele, J. CP2k: atomistic simulations of condensed matter systems. Wiley Interdiscip. Rev. Comput. Mol. Sci. 4, 15–25 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This research is funded by Ghent University (Special Research Fund BOF), BelSPo (IAP 7.35, photonics@be), EU-FP7 (Navolchi), NWO (Vidi grant, No. 723.013.002) Horizon 2020 ITN Phonsi and ERC-ULPICC and ERC-PoC Interdot. P.G. acknowledges the FWO Vlaanderen for a postdoctoral fellowship. S. Flamee is acknowledged for TEM imaging of the QDs and R. Van Deun and P. Smet are acknowledged for the use of the steady-state and time-resolved photoluminescence set-up and the cryogenic spectroscopy, respectively.

Author information

Authors and Affiliations

Authors

Contributions

P.G. carried out the steady-state and time-resolved photoluminescence, and the ultrafast experiments, analysed the data, aided in theory development and wrote the manuscript; A.J.H. supervised the experiments, aided in theory discussions and wrote the manuscript; I.I. and F.Z. performed the DFT calculations and wrote the manuscript; L.K.S. synthesized the HgTe QDs and performed structural characterization (TEM, XRD); C.D. and G.A. carried out the tight-binding simulations and aided in theory development; D.V.T. aided in theory discussions and supervised the research; Z.H. initiated and supervised the research, aided in the theory development and wrote the manuscript.

Corresponding author

Correspondence to Pieter Geiregat.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2021 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geiregat, P., Houtepen, A., Sagar, L. et al. Continuous-wave infrared optical gain and amplified spontaneous emission at ultralow threshold by colloidal HgTe quantum dots. Nature Mater 17, 35–42 (2018). https://doi.org/10.1038/nmat5000

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat5000

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing