Liquid metal–organic frameworks

Abstract

Metal–organic frameworks (MOFs) are a family of chemically diverse materials, with applications in a wide range of fields, covering engineering, physics, chemistry, biology and medicine. Until recently, research has focused almost entirely on crystalline structures, yet now a clear trend is emerging, shifting the emphasis onto disordered states, including ‘defective by design’ crystals, as well as amorphous phases such as glasses and gels. Here we introduce a strongly associated MOF liquid, obtained by melting a zeolitic imidazolate framework. We combine in situ variable temperature X-ray, ex situ neutron pair distribution function experiments, and first-principles molecular dynamics simulations to study the melting phenomenon and the nature of the liquid obtained. We demonstrate from structural, dynamical, and thermodynamical information that the chemical configuration, coordinative bonding, and porosity of the parent crystalline framework survive upon formation of the MOF liquid.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Structure of the ZIF-4 crystal, glass, and structural evolution upon heating.
Figure 2: Computational data from ZIF-4 melting: structure and thermodynamics.
Figure 3: Molecular mechanism of ZIF-4 melting.
Figure 4: Structure and dynamics in the ZIF liquid.

References

  1. 1

    Mason, J. A. et al. Methane storage in flexible metal-organic frameworks with intrinsic thermal management. Nature 527, 357–361 (2015).

    CAS  Article  Google Scholar 

  2. 2

    Rodenas, T. et al. Metal–organic framework nanosheets in polymer composite materials for gas separation. Nat. Mater. 14, 48–55 (2014).

    Article  Google Scholar 

  3. 3

    Yoon, J. W. et al. Selective nitrogen capture by porous hybrid materials containing accessible transition metal ion sites. Nat. Mater. 16, 526–531 (2017).

    CAS  Article  Google Scholar 

  4. 4

    Mondloch, J. E. et al. Destruction of chemical warfare agents using metal-organic frameworks. Nat. Mater. 14, 512–516 (2015).

    CAS  Article  Google Scholar 

  5. 5

    Horike, S., Umeyama, D. & Kitagawa, S. Ion conductivity and transport by porous coordination polymers and metal–organic frameworks. Acc. Chem. Res. 46, 2376–2384 (2013).

    CAS  Article  Google Scholar 

  6. 6

    Sholl, D. S. & Lively, R. P. Defects in metal–organic frameworks challenge or opportunity? J. Phys. Chem. Lett. 6, 3437–3444 (2015).

    CAS  Article  Google Scholar 

  7. 7

    Cairns, A. B. & Goodwin, A. L. Structural disorder in molecular framework materials. Chem. Soc. Rev. 42, 4881–4893 (2013).

    CAS  Article  Google Scholar 

  8. 8

    Schneemann, A. et al. Flexible metal-organic frameworks. Chem. Soc. Rev. 43, 6062–6096 (2014).

    CAS  Article  Google Scholar 

  9. 9

    Morris, R. E. & Čejka, J. Exploiting chemically selective weakness in solids as a route to new porous materials. Nat. Chem. 7, 381–388 (2015).

    CAS  Article  Google Scholar 

  10. 10

    Bennett, T. D., Cheetham, A. K., Fuchs, A. H. & Coudert, F.-X. Interplay between defects, disorder and flexibility in metal-organic frameworks. Nat. Chem. 9, 11–16 (2017).

    CAS  Article  Google Scholar 

  11. 11

    Bennett, T. D. & Cheetham, A. K. Amorphous metal–organic frameworks. Acc. Chem. Res. 47, 1555–1562 (2014).

    CAS  Article  Google Scholar 

  12. 12

    Park, K. S. et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl Acad. Sci. USA 103, 10186–10191 (2006).

    CAS  Article  Google Scholar 

  13. 13

    Tian, Y.-Q. et al. Design and generation of extended zeolitic metal-organic frameworks (ZMOFs): synthesis and crystal structures of zinc(II) imidazolate polymers with zeolitic topologies. Chem. Eur. J. 13, 4146–4154 (2007).

    CAS  Article  Google Scholar 

  14. 14

    Bennett, T. D. et al. Hybrid glasses from strong and fragile metal-organic framework liquids. Nat. Commun. 6, 8079 (2015).

    CAS  Article  Google Scholar 

  15. 15

    Umeyama, D., Horike, S., Inukai, M., Itakura, T. & Kitagawa, S. Reversible solid-to-liquid phase transition of coordination polymer crystals. J. Am. Chem. Soc. 137, 864–870 (2015).

    CAS  Article  Google Scholar 

  16. 16

    MacFarlane, D. R. et al. Ionic liquids and their solid-state analogues as materials for energy generation and storage. Nat. Rev. Mater. 1, 15005 (2016).

    CAS  Article  Google Scholar 

  17. 17

    Giri, N. et al. Liquids with permanent porosity. Nature 527, 216–220 (2015).

    CAS  Article  Google Scholar 

  18. 18

    Kohara, S. et al. Atomic and electronic structures of an extremely fragile liquid. Nat. Commun. 5, 5892 (2014).

    CAS  Article  Google Scholar 

  19. 19

    Corradini, D., Coudert, F.-X. & Vuilleumier, R. Carbon dioxide transport in molten calcium carbonate occurs through an oxo-Grotthuss mechanism via a pyrocarbonate anion. Nat. Chem. 8, 454–460 (2016).

    CAS  Article  Google Scholar 

  20. 20

    Wharmby, M. T. et al. Extreme flexibility in a zeolitic imidazolate framework: porous to dense phase transition in desolvated ZIF-4. Angew. Chem. Int. Ed. 54, 6447–6451 (2015).

    CAS  Article  Google Scholar 

  21. 21

    Bennett, T. D. et al. Structure and properties of an amorphous metal–organic framework. Phys. Rev. Lett. 104, 115503 (2010).

    Article  Google Scholar 

  22. 22

    Bennett, T. D. et al. Melt-quenched glasses of metal–organic frameworks. J. Am. Chem. Soc. 138, 3484–3492 (2016).

    CAS  Article  Google Scholar 

  23. 23

    Mei, Q., Benmore, C. J. & Weber, J. K. R. Structure of liquid SiO2: a measurement by high-energy X-ray diffraction. Phys. Rev. Lett. 98, 057802 (2007).

    CAS  Article  Google Scholar 

  24. 24

    Chakravarty, C., Debenedetti, P. G. & Stillinger, F. H. Lindemann measures for the solid-liquid phase transition. J. Chem. Phys. 126, 204508 (2007).

    Article  Google Scholar 

  25. 25

    Kelly, K. Heats of Fusion of Inorganic Compounds. US Bur. Mines Bull. 393, 152 (1936).

    Google Scholar 

  26. 26

    Samanta, A., Tuckerman, M. E., Yu, T.-Q. & E, W. Microscopic mechanisms of equilibrium melting of a solid. Science 346, 729–732 (2014).

    CAS  Article  Google Scholar 

  27. 27

    Laage, D. & Hynes, J. T. A molecular jump mechanism of water reorientation. Science 311, 832–835 (2006).

    CAS  Article  Google Scholar 

  28. 28

    Laage, D. & Hynes, J. T. On the molecular mechanism of water reorientation. J. Phys. Chem. B 112, 14230–14242 (2008).

    CAS  Article  Google Scholar 

  29. 29

    O’Reilly, N., Giri, N. & James, S. L. Porous liquids. Chem. Eur. J. 13, 3020–3025 (2007).

    Article  Google Scholar 

  30. 30

    Hasell, T. & Cooper, A. I. Porous organic cages: soluble, modular and molecular pores. Nat. Rev. Mater. 1, 16053 (2016).

    CAS  Article  Google Scholar 

  31. 31

    Thornton, A. W. et al. Porosity in metal-organic framework glasses. Chem. Commun. 52, 3750–3753 (2016).

    CAS  Article  Google Scholar 

  32. 32

    Forero-Martinez, N. C., Cortes-Huerto, R. & Ballone, P. The glass transition and the distribution of voids in room-temperature ionic liquids: a molecular dynamics study. J. Chem. Phys. 136, 204510 (2012).

    CAS  Article  Google Scholar 

  33. 33

    Deschamps, J., Costa Gomes, M. F. & Pádua, A. A. H. Molecular simulation study of interactions of carbon dioxide and water with ionic liquids. ChemPhysChem 5, 1049–1052 (2004).

    CAS  Article  Google Scholar 

  34. 34

    Freeman, B. D. Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes. Macromolecules 32, 375–380 (1999).

    CAS  Article  Google Scholar 

  35. 35

    Pimentel, B. R., Parulkar, A., Zhou, E.-k., Brunelli, N. A. & Lively, R. P. Zeolitic imidazolate frameworks: next-generation materials for energy-efficient gas separations. ChemSusChem 7, 3202–3240 (2014).

    CAS  Article  Google Scholar 

  36. 36

    James, J. B. & Lin, Y. S. Kinetics of ZIF-8 thermal decomposition in inert, oxidizing, and reducing environments. J. Phys. Chem. C 120, 14015–14026 (2016).

    CAS  Article  Google Scholar 

  37. 37

    Bennett, T. D., Saines, P. J., Keen, D. A., Tan, J.-C. & Cheetham, A. K. Ball-milling-induced amorphization of zeolitic imidazolate frameworks (ZIFs) for the irreversible trapping of iodine. Chem. Eur. J. 19, 7049–7055 (2013).

    CAS  Article  Google Scholar 

  38. 38

    Nagarkar, S. S. et al. Enhanced and optically switchable proton conductivity in a melting coordination polymer crystal. Angew. Chem. Int. Ed. 56, 4976–4981 (2017).

    CAS  Article  Google Scholar 

  39. 39

    Keen, D. A. A comparison of various commonly used correlation functions for describing total scattering. J. Appl. Cryst. 34, 172–177 (2001).

    CAS  Article  Google Scholar 

  40. 40

    Soper, A. K. GudrunN and GudrunX: Programs for Correcting Raw Neutron and X-ray Diffraction Data to Differential Scattering Cross Section Tech. Rep. RAL-TR-2011-013 (Rutherford Appleton Laboratory, 2011).

    Google Scholar 

  41. 41

    Soper, A. K. & Barney, E. R. Extracting the pair distribution function from white-beam X-ray total scattering data. J. Appl. Cryst. 44, 714–726 (2011).

    CAS  Article  Google Scholar 

  42. 42

    Tucker, M. G., Keen, D. A., Dove, M. T., Goodwin, A. L. & Hui, Q. RMCProfile: reverse Monte Carlo for polycrystalline materials. J. Phys. Condens. Matter 19, 335218 (2007).

    Article  Google Scholar 

  43. 43

    VandeVondele, J. et al. Quickstep: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 167, 103–128 (2005).

    CAS  Article  Google Scholar 

  44. 44

    CP2K 4.1 (CP2K, 2016); http://www.cp2k.org

  45. 45

    Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007).

    Article  Google Scholar 

  46. 46

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  Article  Google Scholar 

  47. 47

    Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  Google Scholar 

  48. 48

    Haigis, V., Coudert, F.-X., Vuilleumier, R. & Boutin, A. Investigation of structure and dynamics of the hydrated metal-organic framework MIL-53(Cr) using first-principles molecular dynamics. Phys. Chem. Chem. Phys. 15, 19049–19056 (2013).

    CAS  Article  Google Scholar 

  49. 49

    Goedecker, S., Teter, M. & Hutter, J. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703–1710 (1996).

    CAS  Article  Google Scholar 

  50. 50

    Pinheiro, M. et al. Characterization and comparison of pore landscapes in crystalline porous materials. J. Mol. Graph. Model. 44, 208–219 (2013).

    CAS  Article  Google Scholar 

  51. 51

    Martin, R. L., Smit, B. & Haranczyk, M. Addressing challenges of identifying geometrically diverse sets of crystalline porous materials. J. Chem. Inf. Model. 52, 308–318 (2012).

    CAS  Article  Google Scholar 

  52. 52

    Willems, T. F., Rycroft, C. H., Kazi, M., Meza, J. C. & Haranczyk, M. Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials. Micro. Meso. Mater. 149, 134–141 (2012).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank A. Boutin, A. Fuchs, A. Cheetham and R. Vuilleumier for fruitful discussions. This work benefited from the financial support of ANRT (thèse CIFRE 2015/0268). We acknowledge access to HPC platforms provided by a GENCI grant (A0010807069). T.D.B. would like to thank the Royal Society for a University Research Fellowship. We also thank Diamond Light Source for access to beamline I15-1 (EE15676), and D. Keeble and P. Chater for assistance with data collection on I15-1 during its initial commissioning phase. We gratefully acknowledge the Science and Technology Facilities Council (STFC) for access to neutron beamtime at ISIS on the GEM instrument. This research used resources of the Advanced Photon Source (Beamline 11-ID-B, GUP44665), a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

Author information

Affiliations

Authors

Contributions

T.D.B. and F.-X.C. designed the project. T.D.B. and D.A.K. performed the total scattering experiments, D.A.K. performed all RMC profile experiments and led the data correction. K.W.C. and K.A.B. contributed to the variable temperature total scattering experiments at the Advanced Photon Source. R.G. performed the molecular simulations, which R.G. and F.-X.C. analysed. All authors participated in discussing the data. R.G., T.D.B. and F.-X.C. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Thomas D. Bennett or François-Xavier Coudert.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 840 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gaillac, R., Pullumbi, P., Beyer, K. et al. Liquid metal–organic frameworks. Nature Mater 16, 1149–1154 (2017). https://doi.org/10.1038/nmat4998

Download citation

Further reading