Article

Liquid metal–organic frameworks

  • Nature Materials volume 16, pages 11491154 (2017)
  • doi:10.1038/nmat4998
  • Download Citation
Received:
Accepted:
Published online:

Abstract

Metal–organic frameworks (MOFs) are a family of chemically diverse materials, with applications in a wide range of fields, covering engineering, physics, chemistry, biology and medicine. Until recently, research has focused almost entirely on crystalline structures, yet now a clear trend is emerging, shifting the emphasis onto disordered states, including ‘defective by design’ crystals, as well as amorphous phases such as glasses and gels. Here we introduce a strongly associated MOF liquid, obtained by melting a zeolitic imidazolate framework. We combine in situ variable temperature X-ray, ex situ neutron pair distribution function experiments, and first-principles molecular dynamics simulations to study the melting phenomenon and the nature of the liquid obtained. We demonstrate from structural, dynamical, and thermodynamical information that the chemical configuration, coordinative bonding, and porosity of the parent crystalline framework survive upon formation of the MOF liquid.

  • Subscribe to Nature Materials for full access:

    $59

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    et al. Methane storage in flexible metal-organic frameworks with intrinsic thermal management. Nature 527, 357–361 (2015).

  2. 2.

    et al. Metal–organic framework nanosheets in polymer composite materials for gas separation. Nat. Mater. 14, 48–55 (2014).

  3. 3.

    et al. Selective nitrogen capture by porous hybrid materials containing accessible transition metal ion sites. Nat. Mater. 16, 526–531 (2017).

  4. 4.

    et al. Destruction of chemical warfare agents using metal-organic frameworks. Nat. Mater. 14, 512–516 (2015).

  5. 5.

    , & Ion conductivity and transport by porous coordination polymers and metal–organic frameworks. Acc. Chem. Res. 46, 2376–2384 (2013).

  6. 6.

    & Defects in metal–organic frameworks challenge or opportunity? J. Phys. Chem. Lett. 6, 3437–3444 (2015).

  7. 7.

    & Structural disorder in molecular framework materials. Chem. Soc. Rev. 42, 4881–4893 (2013).

  8. 8.

    et al. Flexible metal-organic frameworks. Chem. Soc. Rev. 43, 6062–6096 (2014).

  9. 9.

    & Exploiting chemically selective weakness in solids as a route to new porous materials. Nat. Chem. 7, 381–388 (2015).

  10. 10.

    , , & Interplay between defects, disorder and flexibility in metal-organic frameworks. Nat. Chem. 9, 11–16 (2017).

  11. 11.

    & Amorphous metal–organic frameworks. Acc. Chem. Res. 47, 1555–1562 (2014).

  12. 12.

    et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl Acad. Sci. USA 103, 10186–10191 (2006).

  13. 13.

    et al. Design and generation of extended zeolitic metal-organic frameworks (ZMOFs): synthesis and crystal structures of zinc(II) imidazolate polymers with zeolitic topologies. Chem. Eur. J. 13, 4146–4154 (2007).

  14. 14.

    et al. Hybrid glasses from strong and fragile metal-organic framework liquids. Nat. Commun. 6, 8079 (2015).

  15. 15.

    , , , & Reversible solid-to-liquid phase transition of coordination polymer crystals. J. Am. Chem. Soc. 137, 864–870 (2015).

  16. 16.

    et al. Ionic liquids and their solid-state analogues as materials for energy generation and storage. Nat. Rev. Mater. 1, 15005 (2016).

  17. 17.

    et al. Liquids with permanent porosity. Nature 527, 216–220 (2015).

  18. 18.

    et al. Atomic and electronic structures of an extremely fragile liquid. Nat. Commun. 5, 5892 (2014).

  19. 19.

    , & Carbon dioxide transport in molten calcium carbonate occurs through an oxo-Grotthuss mechanism via a pyrocarbonate anion. Nat. Chem. 8, 454–460 (2016).

  20. 20.

    et al. Extreme flexibility in a zeolitic imidazolate framework: porous to dense phase transition in desolvated ZIF-4. Angew. Chem. Int. Ed. 54, 6447–6451 (2015).

  21. 21.

    et al. Structure and properties of an amorphous metal–organic framework. Phys. Rev. Lett. 104, 115503 (2010).

  22. 22.

    et al. Melt-quenched glasses of metal–organic frameworks. J. Am. Chem. Soc. 138, 3484–3492 (2016).

  23. 23.

    , & Structure of liquid SiO2: a measurement by high-energy X-ray diffraction. Phys. Rev. Lett. 98, 057802 (2007).

  24. 24.

    , & Lindemann measures for the solid-liquid phase transition. J. Chem. Phys. 126, 204508 (2007).

  25. 25.

    Heats of Fusion of Inorganic Compounds. US Bur. Mines Bull. 393, 152 (1936).

  26. 26.

    , , & Microscopic mechanisms of equilibrium melting of a solid. Science 346, 729–732 (2014).

  27. 27.

    & A molecular jump mechanism of water reorientation. Science 311, 832–835 (2006).

  28. 28.

    & On the molecular mechanism of water reorientation. J. Phys. Chem. B 112, 14230–14242 (2008).

  29. 29.

    , & Porous liquids. Chem. Eur. J. 13, 3020–3025 (2007).

  30. 30.

    & Porous organic cages: soluble, modular and molecular pores. Nat. Rev. Mater. 1, 16053 (2016).

  31. 31.

    et al. Porosity in metal-organic framework glasses. Chem. Commun. 52, 3750–3753 (2016).

  32. 32.

    , & The glass transition and the distribution of voids in room-temperature ionic liquids: a molecular dynamics study. J. Chem. Phys. 136, 204510 (2012).

  33. 33.

    , & Molecular simulation study of interactions of carbon dioxide and water with ionic liquids. ChemPhysChem 5, 1049–1052 (2004).

  34. 34.

    Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes. Macromolecules 32, 375–380 (1999).

  35. 35.

    , , , & Zeolitic imidazolate frameworks: next-generation materials for energy-efficient gas separations. ChemSusChem 7, 3202–3240 (2014).

  36. 36.

    & Kinetics of ZIF-8 thermal decomposition in inert, oxidizing, and reducing environments. J. Phys. Chem. C 120, 14015–14026 (2016).

  37. 37.

    , , , & Ball-milling-induced amorphization of zeolitic imidazolate frameworks (ZIFs) for the irreversible trapping of iodine. Chem. Eur. J. 19, 7049–7055 (2013).

  38. 38.

    et al. Enhanced and optically switchable proton conductivity in a melting coordination polymer crystal. Angew. Chem. Int. Ed. 56, 4976–4981 (2017).

  39. 39.

    A comparison of various commonly used correlation functions for describing total scattering. J. Appl. Cryst. 34, 172–177 (2001).

  40. 40.

    GudrunN and GudrunX: Programs for Correcting Raw Neutron and X-ray Diffraction Data to Differential Scattering Cross Section Tech. Rep. RAL-TR-2011-013 (Rutherford Appleton Laboratory, 2011).

  41. 41.

    & Extracting the pair distribution function from white-beam X-ray total scattering data. J. Appl. Cryst. 44, 714–726 (2011).

  42. 42.

    , , , & RMCProfile: reverse Monte Carlo for polycrystalline materials. J. Phys. Condens. Matter 19, 335218 (2007).

  43. 43.

    et al. Quickstep: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 167, 103–128 (2005).

  44. 44.

    CP2K 4.1 (CP2K, 2016);

  45. 45.

    , & Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007).

  46. 46.

    , & Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

  47. 47.

    , , & A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

  48. 48.

    , , & Investigation of structure and dynamics of the hydrated metal-organic framework MIL-53(Cr) using first-principles molecular dynamics. Phys. Chem. Chem. Phys. 15, 19049–19056 (2013).

  49. 49.

    , & Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703–1710 (1996).

  50. 50.

    et al. Characterization and comparison of pore landscapes in crystalline porous materials. J. Mol. Graph. Model. 44, 208–219 (2013).

  51. 51.

    , & Addressing challenges of identifying geometrically diverse sets of crystalline porous materials. J. Chem. Inf. Model. 52, 308–318 (2012).

  52. 52.

    , , , & Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials. Micro. Meso. Mater. 149, 134–141 (2012).

Download references

Acknowledgements

We thank A. Boutin, A. Fuchs, A. Cheetham and R. Vuilleumier for fruitful discussions. This work benefited from the financial support of ANRT (thèse CIFRE 2015/0268). We acknowledge access to HPC platforms provided by a GENCI grant (A0010807069). T.D.B. would like to thank the Royal Society for a University Research Fellowship. We also thank Diamond Light Source for access to beamline I15-1 (EE15676), and D. Keeble and P. Chater for assistance with data collection on I15-1 during its initial commissioning phase. We gratefully acknowledge the Science and Technology Facilities Council (STFC) for access to neutron beamtime at ISIS on the GEM instrument. This research used resources of the Advanced Photon Source (Beamline 11-ID-B, GUP44665), a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

Author information

Affiliations

  1. Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France

    • Romain Gaillac
    •  & François-Xavier Coudert
  2. Air Liquide, Centre de Recherche Paris Saclay, 78354 Jouy-en-Josas, France

    • Romain Gaillac
    •  & Pluton Pullumbi
  3. X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA

    • Kevin A. Beyer
    •  & Karena W. Chapman
  4. ISIS Facility, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxon OX11 0QX, UK

    • David A. Keen
  5. Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, UK

    • Thomas D. Bennett

Authors

  1. Search for Romain Gaillac in:

  2. Search for Pluton Pullumbi in:

  3. Search for Kevin A. Beyer in:

  4. Search for Karena W. Chapman in:

  5. Search for David A. Keen in:

  6. Search for Thomas D. Bennett in:

  7. Search for François-Xavier Coudert in:

Contributions

T.D.B. and F.-X.C. designed the project. T.D.B. and D.A.K. performed the total scattering experiments, D.A.K. performed all RMC profile experiments and led the data correction. K.W.C. and K.A.B. contributed to the variable temperature total scattering experiments at the Advanced Photon Source. R.G. performed the molecular simulations, which R.G. and F.-X.C. analysed. All authors participated in discussing the data. R.G., T.D.B. and F.-X.C. wrote the manuscript with input from all authors.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Thomas D. Bennett or François-Xavier Coudert.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information