Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma

Abstract

An effective blood-based method for the diagnosis and prognosis of hepatocellular carcinoma (HCC) has not yet been developed. Circulating tumour DNA (ctDNA) carrying cancer-specific genetic and epigenetic aberrations may enable a noninvasive ‘liquid biopsy’ for diagnosis and monitoring of cancer. Here, we identified an HCC-specific methylation marker panel by comparing HCC tissue and normal blood leukocytes and showed that methylation profiles of HCC tumour DNA and matched plasma ctDNA are highly correlated. Using cfDNA samples from a large cohort of 1,098 HCC patients and 835 normal controls, we constructed a diagnostic prediction model that showed high diagnostic specificity and sensitivity (P < 0.001) and was highly correlated with tumour burden, treatment response, and stage. Additionally, we constructed a prognostic prediction model that effectively predicted prognosis and survival (P < 0.001). Together, these findings demonstrate in a large clinical cohort the utility of ctDNA methylation markers in the diagnosis, surveillance, and prognosis of HCC.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Workflow chart of data generation and analysis.
Figure 2: cfDNA methylation analysis of HCC diagnosis.
Figure 3: cfDNA methylation analysis and tumour burden, treatment response, and staging.
Figure 4: cfDNA methylation analysis for prognostic prediction HCC survival.

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. 1

    Torre, L. A. et al. Global cancer statistics, 2012. CA Cancer J. Clin. 65, 87–108 (2015).

    Article  Google Scholar 

  2. 2

    Bruix, J. & Sherman, M. AASLD Practice Guideline: Management of hepatocellular carcinoma. Hepatology 42, 1208–1236 (2005).

    Article  Google Scholar 

  3. 3

    Johnson, P. Role of alpha - fetoprotein in the diagnosis and management of hepatocellular carcinoma. J. Gastroenterol. Hepatol. 14, S32–S36 (1999).

    Article  Google Scholar 

  4. 4

    Stroun, M. et al. The origin and mechanism of circulating DNA. Ann. NY Acad. Sci. 906, 161–168 (2000).

    CAS  Article  Google Scholar 

  5. 5

    Bettegowda, C. et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci. Trans. Med. 6, 224ra224 (2014).

    Article  Google Scholar 

  6. 6

    Newman, A. M. et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat. Med. 20, 548–554 (2014).

    CAS  Article  Google Scholar 

  7. 7

    Esteller, M. Epigenetics in cancer. N. Engl. J. Med. 358, 1148–1159 (2008).

    CAS  Article  Google Scholar 

  8. 8

    Baylin, S. B. & Jones, P. A. Epigenetic determinants of cancer. Cold Spring Harb. Perspect. Biol. 8, a019505 (2016).

    Article  Google Scholar 

  9. 9

    Irizarry, R. A. et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat. Genet. 41, 178–186 (2009).

    CAS  Article  Google Scholar 

  10. 10

    Baylin, S. B. & Jones, P. A. A decade of exploring the cancer epigenome—biological and translational implications. Nat. Rev. Cancer 11, 726–734 (2011).

    CAS  Article  Google Scholar 

  11. 11

    Board, R. E. et al. DNA methylation in circulating tumour DNA as a biomarker for cancer. Biomarker Insights 2, 307–319 (2008).

    Google Scholar 

  12. 12

    Warren, J. D. et al. Septin 9 methylated DNA is a sensitive and specific blood test for colorectal cancer. BMC Med. 9, 133 (2011).

    CAS  Article  Google Scholar 

  13. 13

    Pishvaian, M. J. et al. A pilot study evaluating concordance between blood-based and patient-matched tumor molecular testing within pancreatic cancer patients participating in the Know Your Tumor (KYT) initiative. Oncotarget 7, 13225 (2016).

    Google Scholar 

  14. 14

    Lehmann-Werman, R. et al. Identification of tissue-specific cell death using methylation patterns of circulating DNA. Proc. Natl Acad. Sci. USA 113, 201519286 (2016).

    Article  Google Scholar 

  15. 15

    Hannum, G. et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell 49, 359–367 (2013).

    CAS  Article  Google Scholar 

  16. 16

    Smyth, G. K. Bioinformatics and Computational Biology Solutions Using R and Bioconductor 397–420 (Springer, 2005).

    Google Scholar 

  17. 17

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Statist. Soc. B 57, 289–300 (1995).

    Google Scholar 

  18. 18

    Reich, D. E. et al. Linkage disequilibrium in the human genome. Nature 411, 199–204 (2001).

    CAS  Article  Google Scholar 

  19. 19

    Ardlie, K. G., Kruglyak, L. & Seielstad, M. Patterns of linkage disequilibrium in the human genome. Nat. Rev. Genet. 3, 299–309 (2002).

    CAS  Article  Google Scholar 

  20. 20

    Hao, X. et al. DNA methylation markers for diagnosis and prognosis of common cancers. Proc. Natl Acad. Sci. USA 114, 7414–7419 (2017).

    CAS  Article  Google Scholar 

  21. 21

    Aravanis, A. M., Lee, M. & Klausner, R. D. Next-generation sequencing of circulating tumor DNA for early cancer detection. Cell 168, 571–574 (2017).

    CAS  Article  Google Scholar 

  22. 22

    Snyder, M. W., Kircher, M., Hill, A. J., Daza, R. M. & Shendure, J. Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. Cell 164, 57–68 (2016).

    CAS  Article  Google Scholar 

  23. 23

    Singal, A. et al. Meta-analysis: surveillance with ultrasound for early-stage hepatocellular carcinoma in patients with cirrhosis. Aliment Pharmacol. Ther. 30, 37–47 (2009).

    CAS  Article  Google Scholar 

  24. 24

    Butcher, L. M. et al. Non-CG DNA methylation is a biomarker for assessing endodermal differentiation capacity in pluripotent stem cells. Nat. Commun. 7, 10458 (2016).

    CAS  Article  Google Scholar 

  25. 25

    Libertini, E. et al. Information recovery from low coverage whole-genome bisulfite sequencing. Nat. Commun. 7, 11306 (2016).

    CAS  Article  Google Scholar 

  26. 26

    Burger, L., Gaidatzis, D., Schubeler, D. & Stadler, M. B. Identification of active regulatory regions from DNA methylation data. Nucleic Acids Res. 41, e155 (2013).

    Article  Google Scholar 

  27. 27

    Guo, S. et al. Identification of methylation haplotype blocks aids in deconvolution of heterogeneous tissue samples and tumor tissue-of-origin mapping from plasma DNA. Nat. Genet. 49, 635–642 (2017).

    CAS  Article  Google Scholar 

  28. 28

    Lencioni, R. & Llovet, J. M. Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin. Liver Dis. 30, 52–60 (2010).

    CAS  Article  Google Scholar 

  29. 29

    Raoul, J. L. et al. Using modified RECIST and alpha-fetoprotein levels to assess treatment benefit in hepatocellular carcinoma. Liver Cancer 3, 439–450 (2014).

    CAS  Article  Google Scholar 

  30. 30

    Diehl, F. et al. Circulating mutant DNA to assess tumor dynamics. Nat. Med. 14, 985–990 (2008).

    CAS  Article  Google Scholar 

  31. 31

    Mok, T. et al. Detection and dynamic changes of EGFR mutations from circulating tumor DNA as a predictor of survival outcomes in NSCLC patients treated with first-line intercalated erlotinib and chemotherapy. Clin. Cancer Res. 21, 3196–3203 (2015).

    CAS  Article  Google Scholar 

  32. 32

    Diaz, L. A. Jr. et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 486, 537–540 (2012).

    CAS  Article  Google Scholar 

  33. 33

    Misale, S. et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature 486, 532–536 (2012).

    CAS  Article  Google Scholar 

  34. 34

    Dawson, S. J. et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N. Engl. J. Med. 368, 1199–1209 (2013).

    CAS  Article  Google Scholar 

  35. 35

    Edge, S. B. & Compton, C. C. The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann. Surg. Oncol. 17, 1471–1474 (2010).

    Article  Google Scholar 

  36. 36

    Porreca, G. J. et al. Multiplex amplification of large sets of human exons. Nat. Methods 4, 931–936 (2007).

    CAS  Article  Google Scholar 

  37. 37

    Diep, D. et al. Library-free methylation sequencing with bisulfite padlock probes. Nat. Methods 9, 270–272 (2012).

    CAS  Article  Google Scholar 

  38. 38

    Deng, J. et al. Targeted bisulfite sequencing reveals changes in DNA methylation associated with nuclear reprogramming. Nat. Biotechnol. 27, 353–360 (2009).

    CAS  Article  Google Scholar 

  39. 39

    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The results published here are in part based upon data generated by the TCGA Research Network: http://cancergenome.nih.gov. We thank staff at Kang Zhang and Ruihua Xu laboratories for technical assistance. This study was funded by Richard Annesser Fund, Michael Martin Fund, Dick and Carol Hertzberg Fund, SYSUCC, Xijing Hospital, and West China Hospital.

Author information

Affiliations

Authors

Contributions

W.Wei, M.K., W.Wang, H.L., K.F., W.S., S.Y., L.Z., H.Z., R.Z., Y.X., K.L., H.Cai, G.L., L.Z., R.-h.X., Z.Z., D.L., E.Z. and C.Z. performed the experiments; M.K. W.Wang, H.L., K.F., B.A.C., Q.Q., Q.Z., L.Z., R.-h.X., J.Z., X.F., J.-k.Z., Y.D., H.Carter, M.Y., W.Z., R.G. and X.H. collected and analysed the data. K.Z. and R.-h.X. conceived the project, designed the experiments, and wrote the manuscript; All authors discussed the results and reviewed the manuscript.

Corresponding authors

Correspondence to Rui-hua Xu or Kang Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 7011 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, Rh., Wei, W., Krawczyk, M. et al. Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma. Nature Mater 16, 1155–1161 (2017). https://doi.org/10.1038/nmat4997

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing