Exciton Hall effect in monolayer MoS2

Abstract

The spontaneous Hall effect driven by the quantum Berry phase (which serves as an internal magnetic flux in momentum space) manifests the topological nature of quasiparticles and can be used to control the information flow, such as spin and valley1,2. We report a Hall effect of excitons (fundamental composite particles of electrons and holes that dominate optical responses in semiconductors3). By polarization-resolved photoluminescence mapping, we directly observed the Hall effect of excitons in monolayer MoS2 and valley-selective spatial transport of excitons on a micrometre scale. The Hall angle of excitons is found to be much larger than that of single electrons in monolayer MoS2 (ref. 4), implying that the quantum transport of the composite particles is significantly affected by their internal structures. The present result not only poses a fundamental problem of the Hall effect in composite particles, but also offers a route to explore exciton-based valleytronics in two-dimensional materials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Experimental concept of the exciton Hall effect in monolayer MoS2.
Figure 2: Diffusion of excitons in monolayer MoS2.
Figure 3: The exciton Hall effect.
Figure 4: Selective spatial transport of valley-polarized excitons.

References

  1. 1

    Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

  2. 2

    Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 87, 1213–1259 (2015).

  3. 3

    Elliott, R. J. Intensity of optical absorption by excitons. Phys. Rev. 108, 1384–1389 (1957).

  4. 4

    Mak, K. F., McGill, K. L., Park, J. & McEuen, P. L. The valley Hall effect in MoS2 transistors. Science 344, 1489–1492 (2014).

  5. 5

    Hall, E. H. On a new action of the magnet on electric currents. Am. J. Math. 2, 287–292 (1879).

  6. 6

    Xiao, D., Liu, G. B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

  7. 7

    Strohm, C., Rikken, G. L. J. A. & Wyder, P. Phenomenological evidence for the phonon Hall effect. Phys. Rev. Lett. 95, 155901 (2005).

  8. 8

    Onose, Y. et al. Observation of the Magnon Hall effect. Science 329, 297–299 (2010).

  9. 9

    Yao, W. & Niu, Q. Berry phase effect on the exciton transport and on the exciton Bose–Einstein condensate. Phys. Rev. Lett. 101, 106401 (2008).

  10. 10

    Kuga, S., Murakami, S. & Nagaosa, N. Spin Hall effect of excitons. Phys. Rev. B 78, 205201 (2008).

  11. 11

    Yu, H., Liu, G.-B., Gong, P., Xu, X. & Yao, W. Dirac cones and Dirac saddle points of bright excitons in monolayer transition metal dichalcogenides. Nat. Commun. 5, 3876 (2014).

  12. 12

    Li, Y.-M. et al. Light-induced exciton spin Hall effect in van der Waals heterostructures. Phys. Rev. Lett. 115, 166804 (2015).

  13. 13

    Yu, T. & Wu, M. W. Valley depolarization dynamics and valley Hall effect of excitons in monolayer and bilayer MoS2 . Phys. Rev. B 93, 045414 (2016).

  14. 14

    Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

  15. 15

    Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett. 10, 1271–1275 (2010).

  16. 16

    Zhang, C., Johnson, A., Hsu, C., Li, L. & Shih, C. Direct imaging of band profile in single layer MoS2 on graphite: quasiparticle energy gap, metallic edge states, and edge band bending. Nano Lett. 14, 2443–2447 (2014).

  17. 17

    Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotech. 7, 494–498 (2012).

  18. 18

    Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotech. 7, 490–493 (2012).

  19. 19

    Jones, A. M. et al. Optical generation of excitonic valley coherence in monolayer WSe2 . Nat. Nanotech. 8, 634–638 (2013).

  20. 20

    Srivastava, A. et al. Valley Zeeman effect in elementary optical excitations of a monolayer WSe2 . Nat. Phys. 11, 141–147 (2015).

  21. 21

    Aivazian, G. et al. Magnetic control of valley pseudospin in monolayer WSe2 . Nat. Phys. 11, 148–152 (2015).

  22. 22

    Korn, T., Heydrich, S., Hirmer, M., Schmutzler, J. & Schller, C. Low-temperature photocarrier dynamics in monolayer MoS2 . Appl. Phys. Lett. 99, 2014–2017 (2011).

  23. 23

    Mouri, S. et al. Nonlinear photoluminescence in atomically thin layered WSe2 arising from diffusion-assisted exciton–exciton annihilation. Phys. Rev. B 90, 155449 (2014).

  24. 24

    Cui, Q., Ceballos, F., Kumar, N. & Zhao, H. Transient absorption microscopy of monolayer and bulk WSe2 . ACS Nano 8, 2970–2976 (2014).

  25. 25

    Rivera, P. et al. Valley-polarized exciton dynamics in a 2D semicondcutor heterostructure. Science 351, 688–691 (2016).

  26. 26

    Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Observation of the spin Hall effect in semiconductors. Science 306, 1910–1913 (2004).

  27. 27

    Lee, J., Mak, K. F. & Shan, J. Electrical control of the valley Hall effect in bilayer MoS2 transistors. Nat. Nanotech. 11, 421–425 (2015).

  28. 28

    Leyder, C. et al. Observation of the optical spin Hall effect. Nat. Phys. 3, 628–631 (2007).

  29. 29

    Mak, K. F. et al. Tightly bound trions in monolayer MoS2 . Nat. Mater. 12, 207–211 (2013).

  30. 30

    Xie, L. & Cui, X. Manipulating spin-polarized photocurrents in 2D transition metal dichalcogenides. Proc. Natl Acad. Sci. USA 113, 3746–3750 (2016).

Download references

Acknowledgements

We thank N. Nagaosa, A. Fujimori, M. Yoshida and F. Qin for helpful discussions. M.O. is supported by Advanced Leading Graduate Course for Photon Science (ALPS). M.O. and Y.Z. were supported by Japan Society for the Promotion of Science (JSPS) through the Research Fellowship for Young Scientists. T.I. was supported by Grant-in-Aid for Research Activity Start-up (No. JP15H06133) and Challenging Research (Exploratory) (No. JP17K18748) from JSPS. This research was supported by Grant-in-Aid for specially promoted research (No. 25000003) from JSPS.

Author information

All authors conceived and designed the research. M.O. and Y.Z. built the measurement system. M.O. performed the measurements and analysed the data. All authors discussed the results and wrote the manuscript.

Correspondence to Yoshihiro Iwasa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1291 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Onga, M., Zhang, Y., Ideue, T. et al. Exciton Hall effect in monolayer MoS2. Nature Mater 16, 1193–1197 (2017). https://doi.org/10.1038/nmat4996

Download citation

Further reading