Fast domain wall motion in the vicinity of the angular momentum compensation temperature of ferrimagnets

Published online:


Antiferromagnetic spintronics is an emerging research field which aims to utilize antiferromagnets as core elements in spintronic devices1,2. A central motivation towards this direction is that antiferromagnetic spin dynamics is expected to be much faster than its ferromagnetic counterpart3. Recent theories indeed predicted faster dynamics of antiferromagnetic domain walls (DWs) than ferromagnetic DWs4,5,6. However, experimental investigations of antiferromagnetic spin dynamics have remained unexplored, mainly because of the magnetic field immunity of antiferromagnets7. Here we show that fast field-driven antiferromagnetic spin dynamics is realized in ferrimagnets at the angular momentum compensation point TA. Using rare earth–3d-transition metal ferrimagnetic compounds where net magnetic moment is nonzero at TA, the field-driven DW mobility is remarkably enhanced up to 20 km s−1 T−1. The collective coordinate approach generalized for ferrimagnets8 and atomistic spin model simulations6,9 show that this remarkable enhancement is a consequence of antiferromagnetic spin dynamics at TA. Our finding allows us to investigate the physics of antiferromagnetic spin dynamics and highlights the importance of tuning of the angular momentum compensation point of ferrimagnets, which could be a key towards ferrimagnetic spintronics.

  • Subscribe to Nature Materials for full access:



Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.


  1. 1.

    & Antiferromagnetic metal spintronics. Phil. Trans. R. Soc. A 369, 3098–3114 (2011).

  2. 2.

    , , & Antiferromagnetic spintronics. Nat. Nanotech. 11, 231–241 (2016).

  3. 3.

    & Theory of antiferromagnetic resonance. Phys. Rev. 85, 329–337 (1952).

  4. 4.

    , & High antiferromagnetic domain wall velocity induced by Néel spin-orbit torques. Phys. Rev. Lett. 117, 017202 (2016).

  5. 5.

    et al. Antiferromagnetic domain wall motion driven by spin-orbit torques. Phys. Rev. Lett. 117, 087203 (2016).

  6. 6.

    , & Antiferromagnetic domain wall motion induced by spin waves. Phys. Rev. Lett. 112, 147204 (2014).

  7. 7.

    , & Dynamics of domain walls in weak ferromagnets. Sov. Phys. Usp. 28, 563–588 (1985).

  8. 8.

    , , & Staggered dynamics in antiferromagnets by collective coordinates. Phys. Rev. Lett. 110, 127208 (2013).

  9. 9.

    et al. Atomistic spin model simulations of magnetic nanomaterials. J. Phys. Condens. Matter 26, 103202 (2014).

  10. 10.

    et al. Real-space observation of current-driven domain wall motion in submicron magnetic wires. Phys. Rev. Lett. 92, 077205 (2004).

  11. 11.

    , & Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008).

  12. 12.

    & The motion of 180° domain walls in uniform dc magnetic fields. J. Appl. Phys. 45, 5406–5421 (1974).

  13. 13.

    , & Domain-wall velocities of up to 750 m s−1 driven by exchange-coupling torque in synthetic antiferromagnets. Nat. Nanotech. 10, 221–226 (2015).

  14. 14.

    Sublattice effects in magnetic resonance. Phys. Rev. 91, 1085–1091 (1953).

  15. 15.

    et al. Ultrafast spin dynamics across compensation points in ferrimagnetic GdFeCo: the role of angular momentum compensation. Phys. Rev. B 73, 220402(R) (2006).

  16. 16.

    et al. Magnetization dynamics of the ferrimagnet CoGd near the compensation of magnetization and angular momentum. Phys. Rev. B 74, 134404 (2006).

  17. 17.

    , , , & Dynamics of a vortex domain wall in a magnetic nanostrip: application of the collective-coordinate approach. Phys. Rev. B 78, 134412 (2008).

  18. 18.

    Steady-state motion of magnetic domains. Phys. Rev. Lett. 30, 230–233 (1973).

  19. 19.

    et al. Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins. Nature 472, 205–208 (2011).

  20. 20.

    et al. Temperature dependence of magnetoresistance in GdFeCo/Pt heterostructure. Appl. Phys. Exp. 9, 073001 (2016).

  21. 21.

    , & Electronic-structure calculations for amorphous and crystalline Gd33Fe67 alloys. Phys. Rev. B 46, 7390–7394 (1992).

  22. 22.

    Microwave resonance in ferrimagnetic substance. Prog. Theoret. Phys. 7, 263–265 (1952).

  23. 23.

    On the gyromagnetic ratio and spectroscopic splitting factor of ferromagnetic substances. Phys. Rev. 76, 743–748 (1949).

  24. 24.

    Review of gyromagnetic ratio experiments. Rev. Mod. Phys. 34, 102–109 (1962).

  25. 25.

    & The effect of the spin-orbit interaction on the electronic structure of magnetic materials. J. Phys. Condens. Matter 3, 5131–5141 (1991).

  26. 26.

    et al. Soliton-like magnetic domain wall motion induced by the interfacial Dzyaloshinskii–Moriya interaction. Nat. Phys. 12, 157–161 (2016).

  27. 27.

    et al. Chiral magnetic domain wall in ferrimagnetic GdFeCo wires. Appl. Phys. Exp. 8, 073001 (2015).

  28. 28.

    et al. Observation of asymmetry in domain wall speed under transverse magnetic field. APL Mater. 4, 032504 (2016).

  29. 29.

    et al. Propagation of a domain wall in a submicrometer magnetic wire. Science 284, 468–470 (1999).

  30. 30.

    & Domain wall dynamics in ferromagnets. Phys. Solid State 50, 199–228 (2008).

  31. 31.

    et al. Subpicosecond magnetization reversal across ferrimagnetic compensation points. Phys. Rev. Lett. 99, 217204 (2007).

  32. 32.

    Investigation of domain wall motion in RE-TM magnetic wire towards a current driven memory and logic. J. Magn. Magn. Mater. 383, 50–55 (2015).

  33. 33.

    , , & Temperature dependence of current-induced magnetization switching in spin valves with a ferrimagnetic CoGd free layer. Phys. Rev. Lett. 97, 217202 (2006).

Download references


This work was partly supported by JSPS KAKENHI Grant Numbers 15H05702, 26870300, 26870304, 26103002, 25220604, 2604316 Collaborative Research Program of the Institute for Chemical Research, Kyoto University, the Cooperative Research Project Program of the Research Institute of Electrical Communication, Tohoku University, and R&D project for ICT Key Technology of MEXT from the Japan Society for the Promotion of Science (JSPS). K.-J.K. was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIP) (No. 2017R1C1B2009686, NRF-2016R1A5A1008184) and by the DGIST R&D Program of the Ministry of Science, ICT and Future Planning (17-BT-02). S.K.K. and Y.T. acknowledge support from the Army Research Office under Contract No. W911NF-14-1-0016. D.-H.K. was supported by an Overseas Researcher under Postdoctoral Fellowship of JSPS (Grant Number P16314). K.-J.L. acknowledges support from the National Research Foundation of Korea (NRF-2015M3D1A1070465, NRF-2017R1A2B2006119).

Author information

Author notes

    • Kab-Jin Kim
    •  & Se Kwon Kim

    These authors contributed equally to this work.


  1. Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan

    • Kab-Jin Kim
    • , Yuushou Hirata
    • , Takayuki Tono
    • , Duck-Ho Kim
    • , Takaya Okuno
    • , Woo Seung Ham
    • , Sanghoon Kim
    • , Takahiro Moriyama
    •  & Teruo Ono
  2. Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea

    • Kab-Jin Kim
  3. Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA

    • Se Kwon Kim
    •  & Yaroslav Tserkovnyak
  4. Department of Nano-Semiconductor and Engineering, Korea University, Seoul 02841, Korea

    • Se-Hyeok Oh
    •  & Kyung-Jin Lee
  5. Department of Materials Science & Engineering, Korea University, Seoul 02841, South Korea

    • Gyoungchoon Go
    •  & Kyung-Jin Lee
  6. College of Science and Technology, Nihon University, Funabashi, Chiba 274-8501, Japan

    • Arata Tsukamoto
  7. KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, South Korea

    • Kyung-Jin Lee
  8. Center for Spintronics Research Network (CSRN), Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan

    • Teruo Ono


  1. Search for Kab-Jin Kim in:

  2. Search for Se Kwon Kim in:

  3. Search for Yuushou Hirata in:

  4. Search for Se-Hyeok Oh in:

  5. Search for Takayuki Tono in:

  6. Search for Duck-Ho Kim in:

  7. Search for Takaya Okuno in:

  8. Search for Woo Seung Ham in:

  9. Search for Sanghoon Kim in:

  10. Search for Gyoungchoon Go in:

  11. Search for Yaroslav Tserkovnyak in:

  12. Search for Arata Tsukamoto in:

  13. Search for Takahiro Moriyama in:

  14. Search for Kyung-Jin Lee in:

  15. Search for Teruo Ono in:


K.-J.K., T.M. and T.O. planned the study. A.T. grew and optimized the GdFeCo film. Y.H. and T.T. fabricated the device and performed the experiment with the guidance of K.-J.K. D.-H.K., T.Okuno, W.-S.H. and S.K. helped with the experiment. S.K.K., K.-J.L. and Y.T. provided theory. S.-H.O., G.G. and K.-J.L. performed the numerical simulation. K.-J.K., S.K.K., K.-J.L., T.M. and T.O. analysed the results. K.-J.K., S.K.K., K.-J.L., T.M. and T.O. wrote the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Kab-Jin Kim or Kyung-Jin Lee or Teruo Ono.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information