Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Fast domain wall motion in the vicinity of the angular momentum compensation temperature of ferrimagnets

Abstract

Antiferromagnetic spintronics is an emerging research field which aims to utilize antiferromagnets as core elements in spintronic devices1,2. A central motivation towards this direction is that antiferromagnetic spin dynamics is expected to be much faster than its ferromagnetic counterpart3. Recent theories indeed predicted faster dynamics of antiferromagnetic domain walls (DWs) than ferromagnetic DWs4,5,6. However, experimental investigations of antiferromagnetic spin dynamics have remained unexplored, mainly because of the magnetic field immunity of antiferromagnets7. Here we show that fast field-driven antiferromagnetic spin dynamics is realized in ferrimagnets at the angular momentum compensation point TA. Using rare earth–3d-transition metal ferrimagnetic compounds where net magnetic moment is nonzero at TA, the field-driven DW mobility is remarkably enhanced up to 20 km s−1 T−1. The collective coordinate approach generalized for ferrimagnets8 and atomistic spin model simulations6,9 show that this remarkable enhancement is a consequence of antiferromagnetic spin dynamics at TA. Our finding allows us to investigate the physics of antiferromagnetic spin dynamics and highlights the importance of tuning of the angular momentum compensation point of ferrimagnets, which could be a key towards ferrimagnetic spintronics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustration of device structure.
Figure 2: Identification of magnetization compensation temperature TM.
Figure 3: Field-driven domain wall (DW) dynamics across the angular momentum compensation temperature TA.
Figure 4: Simulation results of ferrimagnetic domain wall (DW).

Similar content being viewed by others

References

  1. MacDonald, A. H. & Tsoi, M. Antiferromagnetic metal spintronics. Phil. Trans. R. Soc. A 369, 3098–3114 (2011).

    Article  CAS  Google Scholar 

  2. Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotech. 11, 231–241 (2016).

    Article  CAS  Google Scholar 

  3. Keffer, F. & Kittel, C. Theory of antiferromagnetic resonance. Phys. Rev. 85, 329–337 (1952).

    Article  CAS  Google Scholar 

  4. Gomonay, O., Jungwirth, T. & Sinova, J. High antiferromagnetic domain wall velocity induced by Néel spin-orbit torques. Phys. Rev. Lett. 117, 017202 (2016).

    Article  CAS  Google Scholar 

  5. Shiino, T. et al. Antiferromagnetic domain wall motion driven by spin-orbit torques. Phys. Rev. Lett. 117, 087203 (2016).

    Article  Google Scholar 

  6. Tveten, E. G., Qaiumzadeh, A. & Brataas, A. Antiferromagnetic domain wall motion induced by spin waves. Phys. Rev. Lett. 112, 147204 (2014).

    Article  Google Scholar 

  7. Baryakhtar, V. G., Ivanov, B. A. & Chetkin, M. V. Dynamics of domain walls in weak ferromagnets. Sov. Phys. Usp. 28, 563–588 (1985).

    Article  Google Scholar 

  8. Tveten, E. G., Qaiumzadeh, A., Tretiakov, O. A. & Brataas, A. Staggered dynamics in antiferromagnets by collective coordinates. Phys. Rev. Lett. 110, 127208 (2013).

    Article  Google Scholar 

  9. Evans, R. F. L. et al. Atomistic spin model simulations of magnetic nanomaterials. J. Phys. Condens. Matter 26, 103202 (2014).

    Article  CAS  Google Scholar 

  10. Yamaguchi, A. et al. Real-space observation of current-driven domain wall motion in submicron magnetic wires. Phys. Rev. Lett. 92, 077205 (2004).

    Article  CAS  Google Scholar 

  11. Parkin, S. S. P., Hayashi, M. & Thomas, L. Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008).

    Article  CAS  Google Scholar 

  12. Schryer, N. L. & Walker, L. R. The motion of 180° domain walls in uniform dc magnetic fields. J. Appl. Phys. 45, 5406–5421 (1974).

    Article  CAS  Google Scholar 

  13. Yang, S.-H., Ryu, K.-S. & Parkin, S. Domain-wall velocities of up to 750 m s−1 driven by exchange-coupling torque in synthetic antiferromagnets. Nat. Nanotech. 10, 221–226 (2015).

    Article  CAS  Google Scholar 

  14. Wangness, R. K. Sublattice effects in magnetic resonance. Phys. Rev. 91, 1085–1091 (1953).

    Article  Google Scholar 

  15. Stanciu, C. D. et al. Ultrafast spin dynamics across compensation points in ferrimagnetic GdFeCo: the role of angular momentum compensation. Phys. Rev. B 73, 220402(R) (2006).

    Article  Google Scholar 

  16. Binder, M. et al. Magnetization dynamics of the ferrimagnet CoGd near the compensation of magnetization and angular momentum. Phys. Rev. B 74, 134404 (2006).

    Article  Google Scholar 

  17. Clarke, D. J., Tretiakov, O. A., Chern, G.-W., Bazaliy, Ya. B. & Tchernyshyov, O. Dynamics of a vortex domain wall in a magnetic nanostrip: application of the collective-coordinate approach. Phys. Rev. B 78, 134412 (2008).

    Article  Google Scholar 

  18. Thiele, A. A. Steady-state motion of magnetic domains. Phys. Rev. Lett. 30, 230–233 (1973).

    Article  Google Scholar 

  19. Radu, I. et al. Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins. Nature 472, 205–208 (2011).

    Article  CAS  Google Scholar 

  20. Okuno, T. et al. Temperature dependence of magnetoresistance in GdFeCo/Pt heterostructure. Appl. Phys. Exp. 9, 073001 (2016).

    Article  Google Scholar 

  21. Tanaka, H., Takayama, S. & Fujiwara, T. Electronic-structure calculations for amorphous and crystalline Gd33Fe67 alloys. Phys. Rev. B 46, 7390–7394 (1992).

    Article  CAS  Google Scholar 

  22. Tsuya, N. Microwave resonance in ferrimagnetic substance. Prog. Theoret. Phys. 7, 263–265 (1952).

    Article  Google Scholar 

  23. Kittel, C. On the gyromagnetic ratio and spectroscopic splitting factor of ferromagnetic substances. Phys. Rev. 76, 743–748 (1949).

    Article  CAS  Google Scholar 

  24. Scott, G. G. Review of gyromagnetic ratio experiments. Rev. Mod. Phys. 34, 102–109 (1962).

    Article  Google Scholar 

  25. Min, B. I. & Jang, Y.-R. The effect of the spin-orbit interaction on the electronic structure of magnetic materials. J. Phys. Condens. Matter 3, 5131–5141 (1991).

    Article  CAS  Google Scholar 

  26. Yoshimura, Y. et al. Soliton-like magnetic domain wall motion induced by the interfacial Dzyaloshinskii–Moriya interaction. Nat. Phys. 12, 157–161 (2016).

    Article  CAS  Google Scholar 

  27. Tono, T. et al. Chiral magnetic domain wall in ferrimagnetic GdFeCo wires. Appl. Phys. Exp. 8, 073001 (2015).

    Article  Google Scholar 

  28. Kim, K.-J. et al. Observation of asymmetry in domain wall speed under transverse magnetic field. APL Mater. 4, 032504 (2016).

    Article  Google Scholar 

  29. Ono, T. et al. Propagation of a domain wall in a submicrometer magnetic wire. Science 284, 468–470 (1999).

    Article  CAS  Google Scholar 

  30. Volkov, V. V. & Bokov, V. A. Domain wall dynamics in ferromagnets. Phys. Solid State 50, 199–228 (2008).

    Article  CAS  Google Scholar 

  31. Stanciu, C. D. et al. Subpicosecond magnetization reversal across ferrimagnetic compensation points. Phys. Rev. Lett. 99, 217204 (2007).

    Article  CAS  Google Scholar 

  32. Awano, H. Investigation of domain wall motion in RE-TM magnetic wire towards a current driven memory and logic. J. Magn. Magn. Mater. 383, 50–55 (2015).

    Article  CAS  Google Scholar 

  33. Jiang, X., Gao, L., Sun, J. Z. & Parkin, S. S. P. Temperature dependence of current-induced magnetization switching in spin valves with a ferrimagnetic CoGd free layer. Phys. Rev. Lett. 97, 217202 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by JSPS KAKENHI Grant Numbers 15H05702, 26870300, 26870304, 26103002, 25220604, 2604316 Collaborative Research Program of the Institute for Chemical Research, Kyoto University, the Cooperative Research Project Program of the Research Institute of Electrical Communication, Tohoku University, and R&D project for ICT Key Technology of MEXT from the Japan Society for the Promotion of Science (JSPS). K.-J.K. was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIP) (No. 2017R1C1B2009686, NRF-2016R1A5A1008184) and by the DGIST R&D Program of the Ministry of Science, ICT and Future Planning (17-BT-02). S.K.K. and Y.T. acknowledge support from the Army Research Office under Contract No. W911NF-14-1-0016. D.-H.K. was supported by an Overseas Researcher under Postdoctoral Fellowship of JSPS (Grant Number P16314). K.-J.L. acknowledges support from the National Research Foundation of Korea (NRF-2015M3D1A1070465, NRF-2017R1A2B2006119).

Author information

Authors and Affiliations

Authors

Contributions

K.-J.K., T.M. and T.O. planned the study. A.T. grew and optimized the GdFeCo film. Y.H. and T.T. fabricated the device and performed the experiment with the guidance of K.-J.K. D.-H.K., T.Okuno, W.-S.H. and S.K. helped with the experiment. S.K.K., K.-J.L. and Y.T. provided theory. S.-H.O., G.G. and K.-J.L. performed the numerical simulation. K.-J.K., S.K.K., K.-J.L., T.M. and T.O. analysed the results. K.-J.K., S.K.K., K.-J.L., T.M. and T.O. wrote the manuscript.

Corresponding authors

Correspondence to Kab-Jin Kim, Kyung-Jin Lee or Teruo Ono.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 540 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, KJ., Kim, S., Hirata, Y. et al. Fast domain wall motion in the vicinity of the angular momentum compensation temperature of ferrimagnets. Nature Mater 16, 1187–1192 (2017). https://doi.org/10.1038/nmat4990

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4990

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing