Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2

Abstract

In contrast to monovalent lithium or sodium ions, the reversible insertion of multivalent ions such as Mg2+ and Al3+ into electrode materials remains an elusive goal. Here, we demonstrate a new strategy to achieve reversible Mg2+ and Al3+ insertion in anatase TiO2, achieved through aliovalent doping, to introduce a large number of titanium vacancies that act as intercalation sites. We present a broad range of experimental and theoretical characterizations that show a preferential insertion of multivalent ions into titanium vacancies, allowing a much greater capacity to be obtained compared to pure TiO2. This result highlights the possibility to use the chemistry of defects to unlock the electrochemical activity of known materials, providing a new strategy for the chemical design of materials for practical multivalent batteries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Titanium vacancies enabling insertion of Mg2+ and Al3+ in anatase.
Figure 2: Titanium vacancies enable reversible electrochemical magnesiation/alumination in anatase.
Figure 3: Ex situ structural analysis of magnesiated/de-magnesiated electrodes.
Figure 4: Chemical and local characterizations of Mg2+ in anatase.
Figure 5: Vacancy-mediated diffusion mechanism of Mg2+ in anatase.

Similar content being viewed by others

References

  1. Dunn, B., Kamath, H. & Tarascon, J.-M. Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011).

    Article  CAS  Google Scholar 

  2. Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652–657 (2008).

    Article  CAS  Google Scholar 

  3. Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).

    Article  CAS  Google Scholar 

  4. Ponrouch, A., Frontera, C., Barde, F. & Palacin, M. R. Towards a calcium-based rechargeable battery. Nat. Mater. 15, 169–172 (2016).

    Article  CAS  Google Scholar 

  5. Aurbach, D. et al. Prototype systems for rechargeable magnesium batteries. Nature 407, 724–727 (2000).

    Article  CAS  Google Scholar 

  6. Aurbach, D. et al. Progress in rechargeable magnesium battery technology. Adv. Mater. 19, 4260–4267 (2007).

    Article  CAS  Google Scholar 

  7. Yoo, H. D. et al. Mg rechargeable batteries: an on-going challenge. Energy Environ. Sci. 6, 2265–2279 (2013).

    Article  CAS  Google Scholar 

  8. Lapidus, S. H. et al. Solvation structure and energetics of electrolytes for multivalent energy storage. Phys. Chem. Chem. Phys. 16, 21941–21945 (2014).

    Article  CAS  Google Scholar 

  9. Lin, M.-C. et al. An ultrafast rechargeable aluminium-ion battery. Nature 520, 324–328 (2015).

    Article  CAS  Google Scholar 

  10. Elia, G. A. et al. An overview and future perspectives of aluminum batteries. Adv. Mater. 28, 7564–7579 (2016).

    Article  CAS  Google Scholar 

  11. Ling, C., Banerjee, D. & Matsui, M. Study of the electrochemical deposition of Mg in the atomic level: Why it prefers the non-dendritic morphology. Electrochim. Acta 76, 270–274 (2012).

    Article  CAS  Google Scholar 

  12. Mohtadi, R. & Mizuno, F. Magnesium batteries: current state of the art, issues and future perspectives. Beilstein J. Nanotech. 5, 1291–1311 (2014).

    Article  CAS  Google Scholar 

  13. Levi, E., Gofer, Y. & Aurbach, D. On the way to rechargeable Mg batteries: the challenge of new cathode materials. Chem. Mater. 22, 860–868 (2010).

    Article  CAS  Google Scholar 

  14. Huie, M. M., Bock, D. C., Takeuchi, E. S., Marschilok, A. C. & Takeuchi, K. J. Cathode materials for magnesium and magnesium-ion based batteries. Coord. Chem. Rev. 287, 15–27 (2015).

    Article  CAS  Google Scholar 

  15. Rong, Z. et al. Materials design rules for multivalent ion mobility in intercalation structures. Chem. Mater. 27, 6016–6021 (2015).

    Article  CAS  Google Scholar 

  16. Ling, C. & Mizuno, F. Phase stability of post-spinel compound AMn2O4(A = Li, Na, or Mg) and its application as a rechargeable battery cathode. Chem. Mater. 25, 3062–3071 (2013).

    Article  CAS  Google Scholar 

  17. Wagemaker, M., Kentgens, A. P. M. & Mulder, F. M. Equilibrium lithium transport between nanocrystalline phases in intercalated TiO2 anatase. Nature 418, 397–399 (2002).

    Article  CAS  Google Scholar 

  18. Borghols, W. J. H. et al. The electronic structure and ionic diffusion of nanoscale LiTiO2 anatase. Phys. Chem. Chem. Phys. 11, 5742–5748 (2009).

    Article  CAS  Google Scholar 

  19. Ren, Y., Hardwick, L. J. & Bruce, P. G. Lithium intercalation into mesoporous anatase with an ordered 3D pore structure. Angew. Chem. Int. Ed. 49, 2570–2574 (2010).

    Article  CAS  Google Scholar 

  20. Li, W. et al. High substitution rate in TiO2 anatase nanoparticles with cationic vacancies for fast lithium storage. Chem. Mater. 27, 5014–5019 (2015).

    Article  CAS  Google Scholar 

  21. Su, S. et al. A novel rechargeable battery with a magnesium anode, a titanium dioxide cathode, and a magnesium borohydride/tetraglyme electrolyte. Chem. Commun. 51, 2641–2644 (2015).

    Article  CAS  Google Scholar 

  22. Zhang, M., MacRae, A. C., Liu, H. & Meng, Y. S. Communication—investigation of anatase-TiO2 as an efficient electrode material for magnesium-ion batteries. J. Electrochem. Soc. 163, A2368–A2370 (2016).

    Article  CAS  Google Scholar 

  23. Liu, S. et al. Aluminum storage behavior of anatase TiO2 nanotube arrays in aqueous solution for aluminum ion batteries. Energy Environ. Sci. 5, 9743–9746 (2012).

    Article  CAS  Google Scholar 

  24. Legrain, F., Malyi, O. & Manzhos, S. Insertion energetics of lithium, sodium, and magnesium in crystalline and amorphous titanium dioxide: a comparative first-principles study. J. Power Sources 278, 197–202 (2015).

    Article  CAS  Google Scholar 

  25. Li, W., Body, M., Legein, C., Borkiewicz, O. J. & Dambournet, D. Atomic insights into nanoparticle formation of hydroxyfluorinated anatase featuring titanium vacancies. Inorg. Chem. 55, 7182–7187 (2016).

    Article  CAS  Google Scholar 

  26. Grimaud, A. et al. Activation of surface oxygen sites on an iridium-based model catalyst for the oxygen evolution reaction. Nat. Energy 2, 16189 (2016).

    Article  CAS  Google Scholar 

  27. Wagemaker, M., Borghols, W. J. H. & Mulder, F. M. Large impact of particle size on insertion reactions. A case for anatase LixTiO2 . J. Am. Chem. Soc. 129, 4323–4327 (2007).

    Article  CAS  Google Scholar 

  28. Wu, N. et al. A highly reversible, low-strain Mg-ion insertion anode material for rechargeable Mg-ion batteries. NPG Asia Mater. 6, e120 (2014).

    Article  CAS  Google Scholar 

  29. Gu, Y., Katsura, Y., Yoshino, T., Takagi, H. & Taniguchi, K. Rechargeable magnesium-ion battery based on a TiSe2-cathode with dp orbital hybridized electronic structure. Sci. Rep. 5, 12486 (2015).

    Article  CAS  Google Scholar 

  30. Lee, B. et al. Investigation on the structural evolutions during the insertion of aluminum ions into Mo6S8 Chevrel phase. J. Electrochem. Soc. 163, A1070–A1076 (2016).

    Article  CAS  Google Scholar 

  31. Wang, W. et al. A new cathode material for super-valent battery based on aluminium ion intercalation and deintercalation. Sci. Rep. 3, 3383 (2013).

    Article  Google Scholar 

  32. Le, D. B. et al. Intercalation of polyvalent cations into V2O5 aerogels. Chem. Mater. 10, 682–684 (1998).

    Article  CAS  Google Scholar 

  33. Chapman, K. W. Emerging operando and X-ray pair distribution function methods for energy materials development. MRS Bull. 41, 231–240 (2016).

    Article  Google Scholar 

  34. Stoyanov, E., Langenhorst, F. & Steinle-Neumann, G. The effect of valence state and site geometry on Ti L3,2 and O K electron energy-loss spectra of TixOy phases. Am. Mineral. 92, 577–586 (2007).

    Article  CAS  Google Scholar 

  35. Sadoc, A. et al. NMR parameters in alkali, alkaline Earth and rare Earth fluorides from first principle calculations. Phys. Chem. Chem. Phys. 13, 18539–18550 (2011).

    Article  CAS  Google Scholar 

  36. Baur, W. H. & Khan, A. A. Rutile-type compounds. IV. SiO2, GeO2 and a comparison with other rutile-type structures. Acta Cryst. B 27, 2133–2139 (1971).

    Article  CAS  Google Scholar 

  37. Fattakhova, D., Kavan, L. & Krtil, P. Lithium insertion into titanium dioxide (anatase) electrodes: microstructure and electrolyte effects. J. Solid State Electrochem. 5, 196–204 (2001).

    Article  CAS  Google Scholar 

  38. Wen, C. J., Boukamp, B. A., Huggins, R. A. & Weppner, W. Thermodynamic and mass transport properties of “LiAl”? J. Electrochem. Soc. 126, 2258–2266 (1979).

    Article  CAS  Google Scholar 

  39. Van der Ven, A., Bhattacharya, J. & Belak, A. A. Understanding Li diffusion in Li-intercalation compounds. Acc. Chem. Res. 46, 1216–1225 (2013).

    Article  CAS  Google Scholar 

  40. Wang, J., Polleux, J., Lim, J. & Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (Anatase) nanoparticles. J. Phys. Chem. C 111, 14925–14931 (2007).

    Article  CAS  Google Scholar 

  41. Emly, A. & Van der Ven, A. Mg intercalation in layered and spinel host crystal structures for Mg Batteries. Inorg. Chem. 54, 4394–4402 (2015).

    Article  CAS  Google Scholar 

  42. Lee, J. et al. Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science 343, 519–522 (2014).

    Article  CAS  Google Scholar 

  43. Hahn, B. P., Long, J. W. & Rolison, D. R. Something from nothing: enhancing electrochemical charge storage with cation vacancies. Acc. Chem. Res. 46, 1181–1191 (2013).

    Article  CAS  Google Scholar 

  44. Kim, H.-S. et al. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3−x . Nat. Mater. 16, 454–460 (2017).

    Article  CAS  Google Scholar 

  45. Pernet, M., Strobel, P., Bonnet, B., Bordet, P. & Chabre, Y. Structural and electrochemical study of lithium insertion into γ-Fe2O3 . Solid State Ion. 66, 259–265 (1993).

    Article  CAS  Google Scholar 

  46. Gao, P. et al. The critical role of point defects in improving the specific capacitance of δ-MnO2 nanosheets. Nat. Commun. 8, 14559 (2017).

    Article  CAS  Google Scholar 

  47. Chupas, P. J. Rapid-acquisition pair distribution function (RA-PDF) analysis. J. Appl. Crystallogr. 36, 1342–1347 (2003).

    Article  CAS  Google Scholar 

  48. Chupas, P. J., Chapman, K. W. & Lee, P. L. Applications of an amorphous silicon-based area detector for high-resolution, high-sensitivity and fast time-resolved pair distribution function measurements. J. Appl. Crystallogr. 40, 463–470 (2007).

    Article  CAS  Google Scholar 

  49. Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N. & Hausermann, D. Two-dimensional detector software: from real detector to idealised image or two-theta scan. High Press. Res. 14, 235–248 (1996).

    Article  Google Scholar 

  50. Qiu, X., Thompson, J. W. & Billinge, S. J. L. PDFgetX2: a GUI-driven program to obtain the pair distribution function from X-ray powder diffraction data. J. Appl. Crystallogr. 37, 678 (2004).

    Article  CAS  Google Scholar 

  51. Farrow, C. L. et al. PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals. J. Phys. Condens. Matter. 19, 335219 (2007).

    Article  CAS  Google Scholar 

  52. Ishii, Y., Wickramasinghe, N. P. & Chimon, S. A new approach in 1D and 2D 13C high-resolution solid-state NMR spectroscopy of paramagnetic organometallic complexes by very fast magic-angle spinning. J. Am. Chem. Soc. 125, 3438–3439 (2003).

    Article  CAS  Google Scholar 

  53. van Gorkom, L. C. M., Hook, J. M., Logan, M. B., Hanna, J. V. & Wasylishen, R. E. Solid-state lead-207 NMR of lead(II) nitrate: localized heating effects at high magic angle spinning speeds. Magn. Reson. Chem. 33, 791–795 (1995).

    Article  CAS  Google Scholar 

  54. Bielecki, A. & Burum, D. P. Temperature dependence of 207Pb MAS spectra of solid lead nitrate. An accurate, sensitive thermometer for variable-temperature MAS. J. Magn. Reson. Ser. A 116, 215–220 (1995).

    Article  CAS  Google Scholar 

  55. Massiot, D. et al. Modelling one- and two-dimensional solid-state NMR spectra. Magn. Reson. Chem. 40, 70–76 (2002).

    Article  CAS  Google Scholar 

  56. Kresse, G. & Hafner, J. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. J. Phys. Condens. Matter. 6, 8245–8257 (1994).

    Article  CAS  Google Scholar 

  57. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  58. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  59. Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).

    Article  CAS  Google Scholar 

  60. Morgan, B. J. & Watson, G. W. GGA + U description of lithium intercalation into anatase TiO2 . Phys. Rev. B 82, 144119 (2010).

    Article  CAS  Google Scholar 

  61. Morgan, B. J. & Watson, G. W. Role of lithium ordering in the LixTiO2 anatase → titanate phase transition. J. Phys. Chem. Lett. 2, 1657–1661 (2011).

    Article  CAS  Google Scholar 

  62. Morgan, B. J. & Madden, P. A. Lithium intercalation into TiO2(B): a comparison of LDA, GGA, and GGA + U density functional calculations. Phys. Rev. B 86, 035147 (2012).

    Article  CAS  Google Scholar 

  63. Morgan, B. J. et al. Computational Dataset for “Reversible Magnesium and Aluminium-ions Insertion in Cation-Deficient Anatase TiO2” University of Bath Research Data Archive http://researchdata.bath.ac.uk/id/eprint/397 (2017).

  64. Morgan, B. J. “vasppy - a Python suite for manipulating VASP files”, https://github.com/bjmorgan/vasppy (2017).

Download references

Acknowledgements

The research leading to these results has received funding from the French National Research Agency under Idex@Sorbonne University for the Future Investments programme (No. ANR-11-IDEX-0004-02) and by the German Federal Ministry of Education and Research (BMBF) through funding by the ‘Sino German TU9 network for electromobility’ under the grant reference number 16N11929. B.J.M. acknowledges support from the Royal Society (UF130329). This work made use of the ARCHER UK National Supercomputing Service (http://www.archer.ac.uk), via the membership of the UK’s HPC Materials Chemistry Consortium, which is funded by EPSRC (EP/L000202). The work done at the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the US DOE under Contract No. DE-AC02-06CH11357. H.G. and D.D. wish to thank the French fluorine network for continuous support. M.B. and C.L. would like to thank C. Jacquemmoz (IMMM) for help with solid-state NMR experiments.

Author information

Authors and Affiliations

Authors

Contributions

J.M., P.S. and D.D. conceived and coordinated the study. T.K., J.M., M.B., C.L., W.D., M.G., A.D., O.J.B., K.W.C., F.D., H.G., P.S. and D.D. carried out experimental work and data analysis. B.J.M. and M.S. conducted the computational study. All authors discussed the results and commented on the manuscript. J.M. and D.D. wrote the manuscript with the contributions of all co-authors.

Corresponding authors

Correspondence to Jiwei Ma, Peter Strasser or Damien Dambournet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1326 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koketsu, T., Ma, J., Morgan, B. et al. Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2. Nature Mater 16, 1142–1148 (2017). https://doi.org/10.1038/nmat4976

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4976

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing