Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Partial breaking of the Coulombic ordering of ionic liquids confined in carbon nanopores

Abstract

Ionic liquids are composed of equal quantities of positive and negative ions. In the bulk, electrical neutrality occurs in these liquids due to Coulombic ordering, in which ion shells of alternating charge form around a central ion. Their structure under confinement is far less well understood. This hinders the widespread application of ionic liquids in technological applications. Here we use scattering experiments to resolve the structure of a widely used ionic liquid (EMI–TFSI) when it is confined inside nanoporous carbons. We show that Coulombic ordering reduces when the pores can accommodate only a single layer of ions. Instead, equally charged ion pairs are formed due to the induction of an electric potential of opposite sign in the carbon pore walls. This non-Coulombic ordering is further enhanced in the presence of an applied external electric potential. This finding opens the door for the design of better materials for electrochemical applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural anomalies of EMI–TFSI confined in unpolarized carbon pores.
Figure 2: Pore size-dependent anion–anion structure in unpolarized carbon nanopores.
Figure 3: Enhanced co-ion pair formation in carbon nanopores of decreasing pore size.
Figure 4: The distributions of IL molecules and induced charges on carbon pore walls in monolayer and bilayer confinement.
Figure 5: Pore size-sensitive oriented structures of EMI cations and TFSI anions in carbon nanopores of 0.7 nm.
Figure 6: The effect of electrode potential on the structural ordering of ionic liquid inside ultra-narrow pores.

Similar content being viewed by others

References

  1. Impey, R. W., Madden, P. A. & McDonald, I. R. Hydration and mobility of ions in solution. J. Phys. Chem. 87, 5071–5083 (1983).

    Article  CAS  Google Scholar 

  2. Jungwirth, P. & Tobias, D. J. Specific ion effects at the air/water interface. Chem. Rev. 106, 1259–1281 (2006).

    Article  CAS  Google Scholar 

  3. Chmiola, J. et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313, 1760–1763 (2006).

    Article  CAS  Google Scholar 

  4. Ohkubo, T. et al. Restricted hydration structures of Rb and Br ions confined in slit-shaped carbon nanospace. J. Am. Chem. Soc. 124, 11860–11861 (2002).

    Article  CAS  Google Scholar 

  5. Huang, J., Sumpter, B. G. & Meunier, V. Theoretical model for nanoporous carbon supercapacitors. Angew. Chem. Int. Ed. 47, 520–524 (2008).

    Article  CAS  Google Scholar 

  6. Tanaka, A. et al. Effect of a quaternary ammonium salt on propylene carbonate structures in slit-shape carbon nanospaces. J. Am. Chem. Soc. 132, 2112–2113 (2010).

    Article  CAS  Google Scholar 

  7. Fukano, M. et al. Vertically oriented propylene carbonate molecules and tetraethyl ammonium ions in carbon slit pores. J. Phys. Chem. C 117, 5752–5757 (2013).

    Article  CAS  Google Scholar 

  8. Deschamps, M. et al. Exploring electrolyte organization in supercapacitor electrodes with solid-state NMR. Nat. Mater. 12, 351–358 (2013).

    Article  CAS  Google Scholar 

  9. Boukhalfa, S., He, L., Melnichenko, Y. B. & Yushin, G. Small-angle neutron scattering for in situ probing of ion adsorption inside micropores. Angew. Chem. Int. Ed. 52, 4618–4622 (2013).

    Article  CAS  Google Scholar 

  10. Forse, A. C. et al. Nuclear magnetic resonance study of ion adsorption on microporous carbide-derived carbon. Phys. Chem. Chem. Phys. 15, 7722–7730 (2013).

    Article  CAS  Google Scholar 

  11. Levi, M. D., Sigalov, S., Aurbach, D. & Daikhin, L. In situ electrochemical quartz crystal admittance methodology for tracking compositional and mechanical changes in porous carbon electrodes. J. Phys. Chem. C 117, 14876–14889 (2013).

    Article  CAS  Google Scholar 

  12. Merlet, C. et al. Highly confined ions store charge more efficiently in supercapacitors. Nat. Commun. 4, 2701 (2013).

    Article  CAS  Google Scholar 

  13. Prehal, C. et al. Quantification of ion confinement and desolvation in nanoporous carbon supercapacitors with modelling and in situ X-ray scattering. Nat. Energy 2, 16215 (2017).

    Article  CAS  Google Scholar 

  14. Fedorov, M. V. & Kornyshev, A. A. Ionic liquids at electrified interfaces. Chem. Rev. 114, 2978–3036 (2014).

    Article  CAS  Google Scholar 

  15. Kornyshev, A. A. Double-layer in ionic liquids: paradigm change? J. Phys. Chem. B 111, 5545–5557 (2007).

    Article  CAS  Google Scholar 

  16. Hayes, R., Warr, G. G. & Atkin, R. Structure and nanostructure in ionic liquids. Chem. Rev. 115, 6357–6426 (2015).

    Article  CAS  Google Scholar 

  17. Armand, M., Endres, F., MacFarlane, D. R., Ohno, H. & Scrosati, B. Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 8, 621–629 (2009).

    Article  CAS  Google Scholar 

  18. Bañuelos, J. L. et al. Densification of ionic liquid molecules within a hierarchical nanoporous carbon structure revealed by small angle scattering and molecular dynamics simulation. Chem. Mater. 26, 1144–1153 (2014).

    Article  Google Scholar 

  19. Tsai, W. Y., Taberna, P. L. & Simon, P. Electrochemical quartz crystal microbalance (EQCM) study of ion dynamics in nanoporous carbons. J. Am. Chem. Soc. 136, 8722–8728 (2014).

    Article  CAS  Google Scholar 

  20. Richey, F. W., Dyatkin, B., Gogotsi, Y. & Elabd, Y. A. Ion dynamics in porous carbon electrodes in supercapacitors using in situ infrared spectroelectrochemistry. J. Am. Chem. Soc. 135, 12818–12826 (2013).

    Article  CAS  Google Scholar 

  21. Forse, A. C. et al. NMR study of ion dynamics and charge storage in ionic liquid supercapacitors. J. Am. Chem. Soc. 137, 7231–7241 (2015).

    Article  CAS  Google Scholar 

  22. Mezger, M. et al. Molecular layering of fluorinated ionic liquids at a charged sapphire (0001) surface. Science 17, 424–428 (2008).

    Article  Google Scholar 

  23. Perkin, S. Ionic liquids in confined geometries. Phys. Chem. Chem. Phys. 14, 5052–5062 (2012).

    Article  CAS  Google Scholar 

  24. Bazant, M. Z., Storey, B. D. & Kornyshev, A. A. Double layer in ionic liquids: overscreening versus crowding. Phys. Rev. Lett. 106, 046102 (2011).

    Article  Google Scholar 

  25. Merlet, C. et al. On the molecular origin of supercapacitance in nanoporous carbon electrodes. Nat. Mater. 11, 306–310 (2012).

    Article  CAS  Google Scholar 

  26. Péan, C. et al. On the dynamics of charging in nanoporous carbon-based supercapacitors. ACS Nano 8, 1576–1583 (2014).

    Article  Google Scholar 

  27. Feng, G. & Cummings, P. T. Supercapacitor capacitance exhibits oscillatory behavior as a function of nanopore size. J. Phys. Chem. Lett. 2, 2859–2864 (2011).

    Article  CAS  Google Scholar 

  28. Kondrat, S. & Kornyshev, A. A. Superionic state in double-layer capacitors with nanoporous electrodes. J. Phys. Condens. Matter 23, 022201 (2011).

    Article  CAS  Google Scholar 

  29. Simon, P. & Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008).

    Article  CAS  Google Scholar 

  30. Lin, R. et al. Solvent effect on the ion adsorption from ionic liquid electrolyte into subnanometer carbon pores. Electrochim. Acta 54, 7025–7032 (2009).

    Article  CAS  Google Scholar 

  31. Kondrat, S., Wu, P., Qiao, R. & Kornyshev, A. A. Accelerating charging dynamics in subnanometre pores. Nat. Mater. 13, 387–393 (2014).

    Article  CAS  Google Scholar 

  32. Porada, S., Zhao, R., van der Wal, A., Presser, V. & Biesheuvel, P. M. Review on the science and technology of water desalination by capacitive deionization. Prog. Mater. Sci. 58, 1388–1442 (2013).

    Article  CAS  Google Scholar 

  33. Brogioli, D. Extracting renewable energy from a salinity difference using a capacitor. Phys. Rev. Lett. 103, 059501 (2009).

    Article  Google Scholar 

  34. Petersen, T. C., Yarovsky, I., Snook, I. K., McCulloch, D. G. & Opletal, G. Structural analysis of carbonaceous solids using an adapted Reverse Monte Carlo algorithm. Carbon 41, 2403–2411 (2003).

    Article  CAS  Google Scholar 

  35. Palmer, J. C. et al. Modeling the structural evolution of carbide-derived carbons using quenched molecular dynamics. Carbon 48, 1116–1123 (2010).

    Article  CAS  Google Scholar 

  36. Kondrat, S., Georgi, N., Fedorov, M. V. & Kornyshev, A. A. A superionic state in nano-porous double-layer capacitors: insights from Monte Carlo simulations. Phys. Chem. Chem. Phys. 13, 11359–11366 (2011).

    Article  CAS  Google Scholar 

  37. Choudhury, A. R., Winterton, N., Steiner, A., Cooper, A. I. & Johnson, K. A. In situ crystallization of ionic liquids with melting points below −25 °C. Cryst. Eng. Commun. 8, 742–745 (2006).

    Article  CAS  Google Scholar 

  38. Iiyama, T. et al. Molecular assembly structure of CCl4 in graphitic nanospaces. J. Phys. Chem. B 101, 3037–3042 (1997).

    Article  CAS  Google Scholar 

  39. Fujii, K. et al. Liquid structure of room-temperature ionic liquid, 1-ethyl-3-methylimidasolium bis-(trifluoromethanesulfonyl) imide. J. Phys. Chem. B 112, 4329–4336 (2008).

    Article  CAS  Google Scholar 

  40. Hettige, J. J., Kashyap, H. K., Annapureddy, H. V. R. & Margulis, C. J. Anion, the reporters of structure in ionic liquids. J. Phys. Chem. Lett. 4, 105–110 (2013).

    Article  CAS  Google Scholar 

  41. Canongia Lopes, J. N. & Padua, A. A. H. Nanostructural organization of ionic liquids. J. Phys. Chem. B 110, 3330–3335 (2006).

    Article  CAS  Google Scholar 

  42. Maolin, S. et al. Ordering layers of [bmim][PF6] ionic liquid on graphite surfaces: molecular dynamics simulation. J. Chem. Phys. 128, 134504 (2008).

    Article  Google Scholar 

  43. Weingärtner, H. S. The static dielectric constant of ionic liquids. Z. Phys. Chem. 220, 1395–1405 (2006).

    Google Scholar 

  44. Cho, M. H. & Silbey, R. J. Suppression and enhancement of van der Waals interactions. J. Chem. Phys. 104, 8730–8741 (1996).

    Article  CAS  Google Scholar 

  45. Rochester, C. C., Lee, A. A., Pruessner, G. & Kornyshev, A. A. Interionic interactions in conducting nanoconfinement. ChemPhysChem 14, 4121–4125 (2013).

    Article  CAS  Google Scholar 

  46. Zhong, Y. et al. Transition metal carbides and nitrides in energy storage and conversion. Adv. Sci. 3, 1500286 (2016).

    Article  Google Scholar 

  47. Allen, M. P. & Tildesley, D. Computer Simulation of Liquids (Clarendon, 1987).

    Google Scholar 

  48. Steele, W. A. The physical interaction of gases with crystalline solids: I. Gas-solid energies and properties of isolated adsorbed atoms. Surf. Sci. 36, 317–352 (1973).

    Article  CAS  Google Scholar 

  49. Presser, V., Heon, M. & Gogotsi, Y. Carbide-derived carbons - from porous networks to nanotubes and graphene. Adv. Funct. Mater. 21, 810–833 (2011).

    Article  CAS  Google Scholar 

  50. Lopes, J. N. C. & Padua, A. A. H. CL&P: a generic and systematic force field for ionic liquids modeling. Theor. Chem. Acc. 131, 1129–1140 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

R.F. is supported by TAKAGI Co., Ltd. This research was supported by Grant-in-Aid for Young Scientists (B) (No. 26870240), Young Scientists (A) (No. 17H04953), Scientific Research (A) (No. 24241038), Scientific Research (B) (No. 17H03039), CREST (JPMJCR1324) and Center of Innovation Program from Japan Science and Technology Agency. The synchrotron radiation experiments were performed at the BL02B2 of SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal No. 2012B1438, No. 2013B1243, No.2014A1167 and No. 2014B1196) and at the BL5S2 of Aichi Synchrotron Radiation Center, Aichi Science & Technology Foundation, Aichi, Japan (Approval No. 2016D4005 and No. 201606124). P.S. acknowledges support from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n.102539 (Advanced Grant, Ionaces project). M.J.B. acknowledges the support of the Australian Research Council Discovery Program (DP110101293). Y.G. work on CDC was supported by the Fluid Interface Reactions, Structures & Transport, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. We are also grateful to K. Van Aken (Drexel University) for providing additional CDC samples.

Author information

Authors and Affiliations

Authors

Contributions

R.F. carried out the experiments, being in main charge of this research. R.F., P.S. and K.K. prepared the manuscript. T.I. developed the HRMC simulation program and supported the structure analysis. M.J.B. supported development of the HRMC program. M.S. computed image charge distributions. R.F. and Y.T. performed HRMC calculations. P.S. and Y.G. provided the CDC samples. J.S. contributed development of in situ X-ray diffraction measurements. R.F., M.S., T.I., P.S., Y.G., M.J.B. and K.K. discussed the results and edited the paper.

Corresponding authors

Correspondence to Patrice Simon or Katsumi Kaneko.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2051 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Futamura, R., Iiyama, T., Takasaki, Y. et al. Partial breaking of the Coulombic ordering of ionic liquids confined in carbon nanopores. Nature Mater 16, 1225–1232 (2017). https://doi.org/10.1038/nmat4974

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4974

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing