Article | Published:

A map of high-mobility molecular semiconductors

Nature Materials volume 16, pages 9981002 (2017) | Download Citation

Abstract

The charge mobility of molecular semiconductors is limited by the large fluctuation of intermolecular transfer integrals, often referred to as off-diagonal dynamic disorder, which causes transient localization of the carriers’ eigenstates. Using a recently developed theoretical framework, we show here that the electronic structure of the molecular crystals determines its sensitivity to intermolecular fluctuations. We build a map of the transient localization lengths of high-mobility molecular semiconductors to identify what patterns of nearest-neighbour transfer integrals in the two-dimensional (2D) high-mobility plane protect the semiconductor from the effect of dynamic disorder and yield larger mobility. Such a map helps rationalizing the transport properties of the whole family of molecular semiconductors and is also used to demonstrate why common textbook approaches fail in describing this important class of materials. These results can be used to rapidly screen many compounds and design new ones with optimal transport characteristics.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Electron mobilities in organic semiconductors. J. Phys. Chem. Solids 24, 1577–1583 (1963).

  2. 2.

    Transport properties of organic semiconductors. Phys. Rev. 133, A1668 (1964).

  3. 3.

    et al. Three-dimensional band structure and bandlike mobility in oligoacene single crystals: a theoretical investigation. J. Chem. Phys. 118, 3764–3774 (2003).

  4. 4.

    , & The transient localization scenario for charge transport in crystalline organic materials. Adv. Funct. Mater. 26, 2292–2315 (2016).

  5. 5.

    The speed limit for sequential charge hopping in molecular materials. Org. Electron. 12, 1988–1991 (2011).

  6. 6.

    Prediction of the absolute charge mobility of molecular semiconductors: the case of rubrene. Adv. Mater. 19, 2000–2004 (2007).

  7. 7.

    & Dynamics of the intermolecular transfer integral in crystalline organic semiconductors. J. Phys. Chem. A 110, 4065–4070 (2006).

  8. 8.

    & A theoretical-study of crystallochromy - Quantum interference effects in the spectra of perylene pigments. J. Am. Chem. Soc. 116, 9684–9691 (1994).

  9. 9.

    , , & Organic semiconductors: a theoretical characterization of the basic parameters governing charge transport. Proc. Natl Acad. Sci. USA 99, 5804–5809 (2002).

  10. 10.

    , & Transport properties in the rubrene crystal: electronic coupling and vibrational reorganization energy. Adv. Mater. 17, 1072–1076 (2005).

  11. 11.

    & Charge-transport regime of crystalline organic semiconductors: diffusion limited by thermal off-diagonal electronic disorder. Phys. Rev. Lett. 96, 086601 (2006).

  12. 12.

    & Bandlike motion and mobility saturation in organic molecular semiconductors. Phys. Rev. Lett. 103, 266601 (2009).

  13. 13.

    , & Transient localization in crystalline organic semiconductors. Phys. Rev. B 83, 081202(R) (2011).

  14. 14.

    & Electronic transport and quantum localization effects in organic semiconductors. Phys. Rev. B 86, 245201 (2012).

  15. 15.

    et al. Crossover from super- to subdiffusive motion and memory effects in crystalline organic semiconductors. Phys. Rev. Lett. 114, 086601 (2015).

  16. 16.

    , & Mixed quantum-classical dynamics for charge transport in organics. Phys. Chem. Chem. Phys. 17, 12395–12406 (2015).

  17. 17.

    , , & Charge transport in organic crystals: critical role of correlated fluctuations unveiled by analysis of Feynman diagrams. J. Chem. Phys. 142, 144503 (2015).

  18. 18.

    , & Drift of charge carriers in crystalline organic semiconductors. J. Chem. Phys. 144, 144905 (2016).

  19. 19.

    , & Simulation of temperature-dependent charge transport in organic semiconductors with various degrees of disorder. J. Chem. Theory Comput. 12, 3087–3096 (2016).

  20. 20.

    , & FOB-SH: fragment orbital-based surface hopping for charge carrier transport in organic and biological molecules and materials. J. Chem. Phys. 145, 064102 (2016).

  21. 21.

    & Disordered electronic systems. Rev. Mod. Phys. 57, 287–337 (1985).

  22. 22.

    , , & Charge transport perpendicular to the high mobility plane in organic crystals: bandlike character maintained despite hundredfold anisotropy. Phys. Rev. B 93, 035205 (2016).

  23. 23.

    , , & Functionalized pentacene: improved electronic properties from control of solid-state order. J. Am. Chem. Soc. 123, 9482–9483 (2001).

  24. 24.

    , , & Organic semiconductors based on [1]benzothieno[3,2-b][1]benzothiophene substructure. Acc. Chem. Res. 47, 1493–1502 (2014).

  25. 25.

    , , & Achievement of balanced electron and hole mobility in copper-phthalocyanine field-effect transistors by using a crystalline aliphatic passivation layer. Org. Electron. 12, 731–735 (2011).

  26. 26.

    , & Perylene-3,4,9,10-tetracarboxylic acid diimides: synthesis, physical properties, and use in organic electronics. J. Org. Chem. 76, 2386–2407 (2011).

  27. 27.

    Dynamic disorder in molecular semiconductors: charge transport in two dimensions. J. Chem. Phys. 134, 034702 (2011).

  28. 28.

    , , , & Charge mobility of discotic mesophases: a multiscale quantum and classical study. Phys. Rev. Lett. 98, 227402 (2007).

  29. 29.

    , & Charge transport network dynamics in molecular aggregates. Proc. Natl Acad. Sci. USA 113, 8595–8600 (2016).

  30. 30.

    et al. Reducing dynamic disorder in small-molecule organic semiconductors by suppressing large-amplitude thermal motions. Nat. Commun. 7, 10736 (2016).

  31. 31.

    et al. Suppressing molecular vibrations in organic semiconductors by inducing strain. Nat. Commun. 7, 11156 (2016).

  32. 32.

    & Anisotropy effects in phonon-assisted charge-carrier transport in organic molecular crystals. Phys. Rev. B 69, 075212 (2004).

  33. 33.

    et al. Microscopic simulations of charge transport in disordered organic semiconductors. J. Chem. Theory Comput. 7, 3335–3345 (2011).

  34. 34.

    Predicting crystal structures of organic compounds. Chem. Soc. Rev. 43, 2098–2111 (2014).

  35. 35.

    , , & Quantum dynamics in two- and three-dimensional quasiperiodic tilings. Phys. Rev. B 65, 220202(R) (2002).

Download references

Acknowledgements

The work of A.T. was supported by ERC (Grant No. 615834) and EPSRC (EP/N021754/1). S.F. acknowledges support by DFG (Grant No. DR228/48-1).

Author information

Affiliations

  1. Univ. Grenoble Alpes, Inst NEEL, F-38042 Grenoble, France

    • S. Fratini
    •  & D. Mayou
  2. CNRS, Inst NEEL, F-38042 Grenoble, France

    • S. Fratini
    •  & D. Mayou
  3. Department of Physical and Chemical Sciences University of L’Aquila, Via Vetoio, I-67100 L’Aquila, Italy

    • S. Ciuchi
  4. CNR Institute for Complex Systems, Via dei Taurini 19, 00185 Roma, Italy

    • S. Ciuchi
  5. Laboratoire de Physique Théorique et Modélisation, CNRS, Université de Cergy-Pontoise, F-95302 Cergy-Pontoise, France

    • G. Trambly de Laissardière
  6. Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK

    • A. Troisi

Authors

  1. Search for S. Fratini in:

  2. Search for S. Ciuchi in:

  3. Search for D. Mayou in:

  4. Search for G. Trambly de Laissardière in:

  5. Search for A. Troisi in:

Contributions

A.T., S.F. and S.C. designed and performed the research. D.M. and G.T.d.L. developed the simulation code used in this work. A.T. and S.F. wrote the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to S. Fratini or S. Ciuchi or A. Troisi.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nmat4970