Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A map of high-mobility molecular semiconductors

Abstract

The charge mobility of molecular semiconductors is limited by the large fluctuation of intermolecular transfer integrals, often referred to as off-diagonal dynamic disorder, which causes transient localization of the carriers’ eigenstates. Using a recently developed theoretical framework, we show here that the electronic structure of the molecular crystals determines its sensitivity to intermolecular fluctuations. We build a map of the transient localization lengths of high-mobility molecular semiconductors to identify what patterns of nearest-neighbour transfer integrals in the two-dimensional (2D) high-mobility plane protect the semiconductor from the effect of dynamic disorder and yield larger mobility. Such a map helps rationalizing the transport properties of the whole family of molecular semiconductors and is also used to demonstrate why common textbook approaches fail in describing this important class of materials. These results can be used to rapidly screen many compounds and design new ones with optimal transport characteristics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electronic structure and transient localization map.
Figure 2: Experimental validation.
Figure 3: Charge transport characteristics on the ensemble of organic semiconductors.
Figure 4: Effect of thermal and extrinsic disorder.

Similar content being viewed by others

References

  1. Glarum, S. H. Electron mobilities in organic semiconductors. J. Phys. Chem. Solids 24, 1577–1583 (1963).

    Article  CAS  Google Scholar 

  2. Friedman, L. Transport properties of organic semiconductors. Phys. Rev. 133, A1668 (1964).

    Article  Google Scholar 

  3. Cheng, Y. C. et al. Three-dimensional band structure and bandlike mobility in oligoacene single crystals: a theoretical investigation. J. Chem. Phys. 118, 3764–3774 (2003).

    Article  CAS  Google Scholar 

  4. Fratini, S., Mayou, D. & Ciuchi, S. The transient localization scenario for charge transport in crystalline organic materials. Adv. Funct. Mater. 26, 2292–2315 (2016).

    Article  CAS  Google Scholar 

  5. Troisi, A. The speed limit for sequential charge hopping in molecular materials. Org. Electron. 12, 1988–1991 (2011).

    Article  CAS  Google Scholar 

  6. Troisi, A. Prediction of the absolute charge mobility of molecular semiconductors: the case of rubrene. Adv. Mater. 19, 2000–2004 (2007).

    Article  CAS  Google Scholar 

  7. Troisi, A. & Orlandi, G. Dynamics of the intermolecular transfer integral in crystalline organic semiconductors. J. Phys. Chem. A 110, 4065–4070 (2006).

    Article  CAS  Google Scholar 

  8. Kazmaier, P. M. & Hoffmann, R. A theoretical-study of crystallochromy - Quantum interference effects in the spectra of perylene pigments. J. Am. Chem. Soc. 116, 9684–9691 (1994).

    Article  CAS  Google Scholar 

  9. Brédas, J.-L., Calbert, J. P., da Silva Filho, D. A. & Cornil, J. Organic semiconductors: a theoretical characterization of the basic parameters governing charge transport. Proc. Natl Acad. Sci. USA 99, 5804–5809 (2002).

    Article  Google Scholar 

  10. da Silva Filho, D. A., Kim, E.-G. & Brédas, J.-L. Transport properties in the rubrene crystal: electronic coupling and vibrational reorganization energy. Adv. Mater. 17, 1072–1076 (2005).

    Article  CAS  Google Scholar 

  11. Troisi, A. & Orlandi, G. Charge-transport regime of crystalline organic semiconductors: diffusion limited by thermal off-diagonal electronic disorder. Phys. Rev. Lett. 96, 086601 (2006).

    Article  Google Scholar 

  12. Fratini, S. & Ciuchi, S. Bandlike motion and mobility saturation in organic molecular semiconductors. Phys. Rev. Lett. 103, 266601 (2009).

    Article  CAS  Google Scholar 

  13. Ciuchi, S., Fratini, S. & Mayou, D. Transient localization in crystalline organic semiconductors. Phys. Rev. B 83, 081202(R) (2011).

    Article  Google Scholar 

  14. Ciuchi, S. & Fratini, S. Electronic transport and quantum localization effects in organic semiconductors. Phys. Rev. B 86, 245201 (2012).

    Article  Google Scholar 

  15. De Filippis, G. et al. Crossover from super- to subdiffusive motion and memory effects in crystalline organic semiconductors. Phys. Rev. Lett. 114, 086601 (2015).

    Article  CAS  Google Scholar 

  16. Wang, L., Prezhdo, O. V. & Beljonne, D. Mixed quantum-classical dynamics for charge transport in organics. Phys. Chem. Chem. Phys. 17, 12395–12406 (2015).

    Article  CAS  Google Scholar 

  17. Packwood, D. M., Oniwa, K., Jin, T. & Asao, N. Charge transport in organic crystals: critical role of correlated fluctuations unveiled by analysis of Feynman diagrams. J. Chem. Phys. 142, 144503 (2015).

    Article  Google Scholar 

  18. Dong, J., Si, W. & Wu, C.-Q. Drift of charge carriers in crystalline organic semiconductors. J. Chem. Phys. 144, 144905 (2016).

    Article  Google Scholar 

  19. Heck, A., Kranz, J. J. & Elstner, M. Simulation of temperature-dependent charge transport in organic semiconductors with various degrees of disorder. J. Chem. Theory Comput. 12, 3087–3096 (2016).

    Article  CAS  Google Scholar 

  20. Spencer, J., Gajdos, F. & Blumberger, J. FOB-SH: fragment orbital-based surface hopping for charge carrier transport in organic and biological molecules and materials. J. Chem. Phys. 145, 064102 (2016).

    Article  Google Scholar 

  21. Lee, P. & Ramakrishnan, T. V. Disordered electronic systems. Rev. Mod. Phys. 57, 287–337 (1985).

    Article  CAS  Google Scholar 

  22. Blülle, B., Troisi, A., Häusermann, R. & Batlogg, B. Charge transport perpendicular to the high mobility plane in organic crystals: bandlike character maintained despite hundredfold anisotropy. Phys. Rev. B 93, 035205 (2016).

    Article  Google Scholar 

  23. Anthony, J. E., Brooks, J. S., Eaton, D. L. & Parkin, S. R. Functionalized pentacene: improved electronic properties from control of solid-state order. J. Am. Chem. Soc. 123, 9482–9483 (2001).

    Article  CAS  Google Scholar 

  24. Takimiya, K., Osaka, I., Mori, T. & Nakano, M. Organic semiconductors based on [1]benzothieno[3,2-b][1]benzothiophene substructure. Acc. Chem. Res. 47, 1493–1502 (2014).

    Article  CAS  Google Scholar 

  25. Kraus, M., Haug, S., Brütting, W. & Opitz, A. Achievement of balanced electron and hole mobility in copper-phthalocyanine field-effect transistors by using a crystalline aliphatic passivation layer. Org. Electron. 12, 731–735 (2011).

    Article  CAS  Google Scholar 

  26. Huang, C., Barlow, S. & Marder, S. R. Perylene-3,4,9,10-tetracarboxylic acid diimides: synthesis, physical properties, and use in organic electronics. J. Org. Chem. 76, 2386–2407 (2011).

    Article  CAS  Google Scholar 

  27. Troisi, A. Dynamic disorder in molecular semiconductors: charge transport in two dimensions. J. Chem. Phys. 134, 034702 (2011).

    Article  Google Scholar 

  28. Kirkpatrick, J., Marcon, V., Nelson, J., Kremer, K. & Andrienko, D. Charge mobility of discotic mesophases: a multiscale quantum and classical study. Phys. Rev. Lett. 98, 227402 (2007).

    Article  Google Scholar 

  29. Jackson, N. E., Chen, L. X. & Ratner, M. A. Charge transport network dynamics in molecular aggregates. Proc. Natl Acad. Sci. USA 113, 8595–8600 (2016).

    Article  CAS  Google Scholar 

  30. Illig, S. et al. Reducing dynamic disorder in small-molecule organic semiconductors by suppressing large-amplitude thermal motions. Nat. Commun. 7, 10736 (2016).

    Article  CAS  Google Scholar 

  31. Kubo, T. et al. Suppressing molecular vibrations in organic semiconductors by inducing strain. Nat. Commun. 7, 11156 (2016).

    Article  CAS  Google Scholar 

  32. Hannewald, K. & Bobbert, P. A. Anisotropy effects in phonon-assisted charge-carrier transport in organic molecular crystals. Phys. Rev. B 69, 075212 (2004).

    Article  Google Scholar 

  33. Ruehle, V. et al. Microscopic simulations of charge transport in disordered organic semiconductors. J. Chem. Theory Comput. 7, 3335–3345 (2011).

    Article  CAS  Google Scholar 

  34. Price, S. L. Predicting crystal structures of organic compounds. Chem. Soc. Rev. 43, 2098–2111 (2014).

    Article  CAS  Google Scholar 

  35. Triozon, F., Vidal, J., Mosseri, R. & Mayou, D. Quantum dynamics in two- and three-dimensional quasiperiodic tilings. Phys. Rev. B 65, 220202(R) (2002).

    Article  Google Scholar 

Download references

Acknowledgements

The work of A.T. was supported by ERC (Grant No. 615834) and EPSRC (EP/N021754/1). S.F. acknowledges support by DFG (Grant No. DR228/48-1).

Author information

Authors and Affiliations

Authors

Contributions

A.T., S.F. and S.C. designed and performed the research. D.M. and G.T.d.L. developed the simulation code used in this work. A.T. and S.F. wrote the manuscript.

Corresponding authors

Correspondence to S. Fratini, S. Ciuchi or A. Troisi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 491 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fratini, S., Ciuchi, S., Mayou, D. et al. A map of high-mobility molecular semiconductors. Nature Mater 16, 998–1002 (2017). https://doi.org/10.1038/nmat4970

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4970

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing