Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Electrotunable nanoplasmonic liquid mirror

An Author Correction to this article was published on 10 May 2019

Abstract

Recently, there has been a drive to design and develop fully tunable metamaterials for applications ranging from new classes of sensors to superlenses among others. Although advances have been made, tuning and modulating the optical properties in real time remains a challenge. We report on the first realization of a reversible electrotunable liquid mirror based on voltage-controlled self-assembly/disassembly of 16 nm plasmonic nanoparticles at the interface between two immiscible electrolyte solutions. We show that optical properties such as reflectivity and spectral position of the absorption band can be varied in situ within ±0.5 V. This observed effect is in excellent agreement with theoretical calculations corresponding to the change in average interparticle spacing. This electrochemical fully tunable nanoplasmonic platform can be switched from a highly reflective ‘mirror’ to a transmissive ‘window’ and back again. This study opens a route towards realization of such platforms in future micro/nanoscale electrochemical cells, enabling the creation of tunable plasmonic metamaterials.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Nanoplasmonic liquid mirror strategies.
Figure 2: Electrochemical set-up and characterization.
Figure 3: Dynamics of assembly and disassembly of 16-nm-diameter MDDA-functionalized gold NPs at the ITIES interface.
Figure 4: Voltage-controlled plasmon ruler utilizing 16-nm-diameter MDDA-functionalized gold NPs at the ITIES interface.
Figure 5: Switchable window–mirror.

References

  1. Fan, J. A. et al. Self-assembled plasmonic panoparticle clusters. Science 328, 1135–1138 (2010).

    CAS  Google Scholar 

  2. Stebe, K. J., Lewandowski, E. & Ghosh, M. Oriented assembly of metamaterials. Science 325, 159–160 (2009).

    CAS  Google Scholar 

  3. Nie, Z., Petukhova, A. & Kumacheva, E. Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nat. Nanotech. 5, 15–25 (2010).

    CAS  Google Scholar 

  4. Lal, S., Link, S. & Halas, N. J. Nano-optics from sensing to waveguiding. Nat. Photon. 1, 641–648 (2007).

    CAS  Google Scholar 

  5. Engheta, N. Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. Science 317, 1698–1702 (2007).

    CAS  Google Scholar 

  6. Kabashin, A. V. et al. Plasmonic nanorod metamaterials for biosensing. Nat. Mater. 8, 867–871 (2009).

    CAS  Google Scholar 

  7. Kawata, S., Inouye, Y. & Verma, P. Plasmonics for near-field nano-imaging and superlensing. Nat. Photon. 3, 388–394 (2009).

    CAS  Google Scholar 

  8. Shalaev, V. M. Optical negative-index metamaterials. Nat. Photon. 1, 41–48 (2007).

    CAS  Google Scholar 

  9. Maier, S. A. et al. Plasmonics—a route to nanoscale optical devices. Adv. Mater. 13, 1501–1505 (2001).

    CAS  Google Scholar 

  10. Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010).

    CAS  Google Scholar 

  11. Willets, K. A. & Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58, 267–297 (2007).

    CAS  Google Scholar 

  12. Samec, Z. Electrical double layer at the interface between two immiscible electrolyte solutions. Chem. Rev. 88, 617–632 (1988).

    CAS  Google Scholar 

  13. Samec, Z. Electrochemistry at the interface between two immiscible electrolyte solutions. Pure Appl. Chem. 76, 2147–2180 (2004).

    CAS  Google Scholar 

  14. Jensen, T. R., Schatz, G. C. & Van Duyne, R. P. Nanosphere lithography: surface plasmon resonance spectrum of a periodic array of silver nanoparticles by ultraviolet–visible extinction spectroscopy and electrodynamic modeling. J. Phys. Chem. B 103, 2394–2401 (1999).

    CAS  Google Scholar 

  15. Jain, P. K., Huang, W. & El-Sayed, M. A. On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation. Nano Lett. 7, 2080–2088 (2007).

    CAS  Google Scholar 

  16. Ghosh, S. K. & Pal, T. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem. Rev. 107, 4797–4862 (2007).

    CAS  Google Scholar 

  17. Su, K.-H. et al. Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett. 3, 1087–1090 (2003).

    CAS  Google Scholar 

  18. Halas, N. J., Lal, S., Chang, W.-S., Link, S. & Nordlander, P. Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 111, 3913–3961 (2011).

    CAS  Google Scholar 

  19. Yogev, D. & Efrima, S. Novel silver metal liquidlike films. J. Phys. Chem. 92, 5754–5760 (1988).

    CAS  Google Scholar 

  20. Flatté, M. E., Kornyshev, A. A. & Urbakh, M. Electrovariable nanoplasmonics and self-assembling smart mirrors. J. Phys. Chem. C 114, 1735–1747 (2010).

    Google Scholar 

  21. Edel, J. B., Kornyshev, A. A., Kucernak, A. R. & Urbakh, M. Fundamentals and applications of self-assembled plasmonic nanoparticles at interfaces. Chem. Soc. Rev. 45, 1581–1596 (2016).

    CAS  Google Scholar 

  22. Booth, S. G. & Dryfe, R. A. W. Assembly of nanoscale objects at the liquid/liquid interface. J. Phys. Chem. C 119, 23295–23309 (2015).

    CAS  Google Scholar 

  23. Smirnov, E., Peljo, P., Scanlon, M. D., Gumy, F. & Girault, H. H. Self-healing gold mirrors and filters at liquid–liquid interfaces. Nanoscale 8, 7723–7737 (2016).

    CAS  Google Scholar 

  24. Velleman, L. et al. Tuneable 2D self-assembly of plasmonic nanoparticles at liquid|liquid interfaces. Nanoscale 8, 19229–19241 (2016).

    CAS  Google Scholar 

  25. Turek, V. A. et al. Plasmonic ruler at the liquid–liquid interface. ACS Nano 6, 7789–7799 (2012).

    CAS  Google Scholar 

  26. Flatté, M. E., Kornyshev, A. A. & Urbakh, M. Understanding voltage-induced localization of nanoparticles at a liquid–liquid interface. J. Phys. Condens. Matter 20, 073102 (2008).

    Google Scholar 

  27. Edel, J. B., Kornyshev, A. A. & Urbakh, M. Self-assembly of nanoparticle arrays for use as mirrors, sensors, and antennas. ACS Nano 7, 9526–9532 (2013).

    CAS  Google Scholar 

  28. Sikdar, D. & Kornyshev, A. A. Theory of tailorable optical response of two-dimensional arrays of plasmonic nanoparticles at dielectric interfaces. Sci. Rep. 6, 33712 (2016).

    CAS  Google Scholar 

  29. Su, B. et al. Reversible voltage-induced assembly of Au nanoparticles at liquid|liquid interfaces. J. Am. Chem. Soc. 126, 915–919 (2004).

    CAS  Google Scholar 

  30. Abid, J.-P., Abid, M., Bauer, C., Girault, H. H. & Brevet, P.-F. Controlled reversible adsorption of core-shell metallic nanoparticles at the polarized water/1,2-dichloroethane interface investigated by optical second-harmonic generation. J. Phys. Chem. C 111, 8849–8855 (2007).

    CAS  Google Scholar 

  31. Bera, M. K. et al. Interfacial localization and voltage-tunable arrays of charged nanoparticles. Nano Lett. 14, 6816–6822 (2014).

    CAS  Google Scholar 

  32. Booth, S. G., Cowcher, D. P., Goodacre, R. & Dryfe, R. A. W. Electrochemical modulation of SERS at the liquid/liquid interface. Chem. Commun. 50, 4482–4484 (2014).

    CAS  Google Scholar 

  33. Fang, P.-P. et al. Conductive gold nanoparticle mirrors at liquid/liquid interfaces. ACS Nano 7, 9241–9248 (2013).

    CAS  Google Scholar 

  34. Kondrat, S., Wu, P., Qiao, R. & Kornyshev, A. A. Accelerating charging dynamics in subnanometre pores. Nat. Mater. 13, 387–393 (2014).

    CAS  Google Scholar 

  35. Park, C. et al. Switchable silver mirrors with long memory effects. Chem. Sci. 6, 596–602 (2015).

    CAS  Google Scholar 

  36. Konrad, M. P., Doherty, A. P. & Bell, S. E. J. Stable and uniform SERS signals from self-assembled two-dimensional interfacial arrays of optically coupled Ag nanoparticles. Anal. Chem. 85, 6783–6789 (2013).

    CAS  Google Scholar 

  37. Xu, Y., Konrad, M. P., Lee, W. W. Y., Ye, Z. & Bell, S. E. J. A method for promoting assembly of metallic and nonmetallic nanoparticles into interfacial monolayer films. Nano Lett. 16, 5255–5260 (2016).

    CAS  Google Scholar 

  38. Verwey, E. J. W. & Niessen, K. F. XL. The electrical double layer at the interface of two liquids. Lond. Edinb. Dublin Philos. Mag. J. Sci. 28, 435–446 (1939).

    CAS  Google Scholar 

  39. Daikhin, L. I., Kornyshev, A. A. & Urbakh, M. Capillary waves at soft electrified interfaces. J. Electroanal. Chem. 483, 68–80 (2000).

    CAS  Google Scholar 

  40. Marinescu, M., Urbakh, M. A. & Kornyshev, A. Voltage-dependent capacitance of metallic nanoparticles at a liquid/liquid interface. Phys. Chem. Chem. Phys. 14, 1371–1380 (2012).

    CAS  Google Scholar 

  41. Younan, N., Hojeij, M., Ribeaucourt, L. & Girault, H. H. Electrochemical properties of gold nanoparticles assembly at polarised liquid|liquid interfaces. Electrochem. Commun. 12, 912–915 (2010).

    CAS  Google Scholar 

  42. Kornyshev, A. A. Nonlocal screening of ions in a structurized polar liquid—new aspects of solvent description in electrolyte theory. Electrochim. Acta 26, 1–20 (1981).

    CAS  Google Scholar 

  43. Girault, H. H. & Schiffrin, D. H. in Electroanalytical Chemistry, Electrochemistry of Liquid–Liquid Interfaces Vol. 15 (ed. Bard, A. J.) 1–142 (CRC Press, 1988).

    Google Scholar 

  44. Miura, T. & Seki, K. Diffusion influenced adsorption kinetics. J. Phys. Chem. B 119, 10954–10961 (2015).

    CAS  Google Scholar 

  45. Wong, K., Chen, C., Wei, K., Roy, V. A. L. & Chathoth, S. M. Diffusion of gold nanoparticles in toluene and water as seen by dynamic light scattering. J. Nanopart. Res. 17, 153 (2015).

    Google Scholar 

  46. Rahn, J. R. & Hallock, R. B. Antibody binding to antigen-coated substrates studied with surface plasmon oscillations. Langmuir 11, 650–654 (1995).

    CAS  Google Scholar 

  47. Kramers, H. A. Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7, 284–304 (1940).

    CAS  Google Scholar 

  48. Hanggi, P. Escape from a metastable state. J. Stat. Phys. 42, 105–148 (1986).

    Google Scholar 

  49. Sikdar, D., Hasan, S. B., Urbakh, M., Edel, J. B. & Kornyshev, A. A. Unravelling the optical responses of nanoplasmonic mirror-on-mirror metamaterials. Phys. Chem. Chem. Phys. 18, 20486–20498 (2016).

    CAS  Google Scholar 

  50. Volkov, A. G., Deamer, D. W., Tanelian, D. L. & Markin, V. S. Electrical double layers at the oil/water interface. Prog. Surf. Sci. 53, 1–134 (1996).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank F. Bresme, A. Fedosyuk, M. Flatte, H. Girault, D. J. O’Lee, G. Oshanin, O. Robotham and M. Urbakh for useful discussions. The work was mainly supported by a grant from the Engineering and Physical Sciences Research Council UK, ‘Electrotuneable Molecular Alarm’, EP/L02098X/1. J.B.E. also acknowledges receipt of European Research Council starting (NanoP) and consolidator grants (NanoPD). L.V. acknowledges the support of a Marie Skodowska-Curie fellowship (N-SHEAD).

Author information

Authors and Affiliations

Authors

Contributions

Y.Montelongo obtained all data for optical and electrochemical measurements, D.S. carried out all theoretical calculations in feedback mode with experiments; Y.Montelongo and D.S. treated the data. Y.Ma and L.V. synthesized the NPs, A.J.S.M. helped in designing and building the electrochemical set-up. Y.Ma performed analysis of NPs as included in the Supplementary Information. All authors contributed to discussions, interpretation of results and aided in drafting the manuscript.

Corresponding authors

Correspondence to Anthony R. Kucernak, Joshua B. Edel or Alexei A. Kornyshev.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3100 kb)

Supplementary Information

Supplementary movie 1 (MP4 58470 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Montelongo, Y., Sikdar, D., Ma, Y. et al. Electrotunable nanoplasmonic liquid mirror. Nature Mater 16, 1127–1135 (2017). https://doi.org/10.1038/nmat4969

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4969

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing