Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Imaging and tuning polarity at SrTiO3 domain walls

Abstract

Electrostatic fields tune the ground state of interfaces between complex oxide materials. Electronic properties, such as conductivity and superconductivity, can be tuned and then used to create and control circuit elements and gate-defined devices. Here we show that naturally occurring twin boundaries, with properties that are different from their surrounding bulk, can tune the LaAlO3/SrTiO3 interface 2DEG at the nanoscale. In particular, SrTiO3 domain boundaries have the unusual distinction of remaining highly mobile down to low temperatures, and were recently suggested to be polar. Here we apply localized pressure to an individual SrTiO3 twin boundary and detect a change in LaAlO3/SrTiO3 interface current distribution. Our data directly confirm the existence of polarity at the twin boundaries, and demonstrate that they can serve as effective tunable gates. As the location of SrTiO3 domain walls can be controlled using external field stimuli, our findings suggest a novel approach to manipulate SrTiO3-based devices on the nanoscale.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Strong response to stress on STO domain walls.
Figure 2: Δ V increases with stress on domain walls and scales with domain size.
Figure 3: Local change in resistivity diverts current flow, describes well the measured Δ V map, and suggests a non-local response.

References

  1. Caviglia, A. D. et al. Electric field control of the LaAlO3/SrTiO3 interface ground state. Nature 456, 624–627 (2008).

    Article  CAS  Google Scholar 

  2. Thiel, S., Hammerl, G., Schmehl, A., Schneider, C. W. & Mannhart, J. Tunable quasi-two-dimensional electron gases in oxide heterostructures. Science 313, 1942–1945 (2006).

    Article  CAS  Google Scholar 

  3. Caviglia, A. D. et al. Tunable Rashba spin–orbit interaction at oxide interfaces. Phys. Rev. Lett. 104, 126803 (2010).

    Article  CAS  Google Scholar 

  4. Ben Shalom, M., Sachs, M., Rakhmilevitch, D., Palevski, A. & Dagan, Y. Tuning spin–orbit coupling and superconductivity at the SrTiO3/LaAlO3 interface: a magnetotransport study. Phys. Rev. Lett. 104, 126802 (2010).

    Article  CAS  Google Scholar 

  5. Goswami, S. et al. Quantum interference in an interfacial superconductor. Nat. Nanotech. 11, 861–865 (2016).

    Article  CAS  Google Scholar 

  6. Cen, C. et al. Nanoscale control of an interfacial metal–insulator transition at room temperature. Nat. Mater. 7, 298–302 (2008).

    Article  CAS  Google Scholar 

  7. Cheng, G. et al. Sketched oxide single-electron transistor. Nat. Nanotech. 6, 343–347 (2011).

    Article  CAS  Google Scholar 

  8. Cowley, R. A. Lattice dynamics and phase transitions of strontium titanate. Phys. Rev. 134, A981–A997 (1964).

    Article  Google Scholar 

  9. Rowley, S. E. et al. Ferroelectric quantum criticality. Nat. Phys. 10, 367–372 (2014).

    Article  CAS  Google Scholar 

  10. Blinc, R., Zalar, B., Laguta, V. V. & Itoh, M. Order–disorder component in the phase transition mechanism of 18O enriched strontium titanate. Phys. Rev. Lett. 94, 147601 (2005).

    Article  Google Scholar 

  11. Scott, J. F., Salje, E. K. H. & Carpenter, M. A. Domain wall damping and elastic softening in SrTiO3: evidence for polar twin walls. Phys. Rev. Lett. 109, 187601 (2012).

    Article  CAS  Google Scholar 

  12. Salje, E. K. H., Aktas, O., Carpenter, M. A., Laguta, V. V. & Scott, J. F. Domains within domains and walls within walls: evidence for polar domains in cryogenic SrTiO3 . Phys. Rev. Lett. 111, 247603 (2013).

    Article  CAS  Google Scholar 

  13. Zykova-Timan, T. & Salje, E. K. H. Highly mobile vortex structures inside polar twin boundaries in SrTiO3 . Appl. Phys. Lett. 104, 2012–2016 (2014).

    Article  Google Scholar 

  14. Goncalves-Ferreira, L., Redfern, S. A. T., Artacho, E., Salje, E. & Lee, W. T. Trapping of oxygen vacancies in the twin walls of perovskite. Phys. Rev. B 81, 024109 (2010).

    Article  Google Scholar 

  15. Seidel, J. et al. Conduction at domain walls in oxide multiferroics. Nat. Mater. 8, 229–234 (2009).

    Article  CAS  Google Scholar 

  16. Whyte, J. R. et al. Ferroelectric domain wall injection. Adv. Mater. 26, 293–298 (2014).

    Article  CAS  Google Scholar 

  17. Crassous, A., Sluka, T., Tagantsev, A. K. & Setter, N. Polarization charge as a reconfigurable quasi-dopant in ferroelectric thin films. Nat. Nanotech. 10, 614–619 (2015).

    Article  CAS  Google Scholar 

  18. Ohtomo, A. & Hwang, H. Y. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423–426 (2004).

    Article  CAS  Google Scholar 

  19. Zubko, P., Gariglio, S., Gabay, M., Ghosez, P. & Triscone, J.-M. Interface physics in complex oxide heterostructures. Annu. Rev. Condens. Matter Phys. 2, 141–165 (2011).

    Article  CAS  Google Scholar 

  20. Kalisky, B. et al. Locally enhanced conductivity due to the tetragonal domain structure in LAO/STO heterointerfaces. Nat. Mater. 12, 1091–1095 (2013).

    Article  CAS  Google Scholar 

  21. Honig, M. et al. Local electrostatic imaging of striped domain order in LaAlO3/SrTiO3 . Nat. Mater. 12, 1112–1118 (2013).

    Article  CAS  Google Scholar 

  22. Ma, H. J. H. et al. Local electrical imaging of tetragonal domains and field-induced ferroelectric twin walls in conducting STO. Phys. Rev. Lett. 116, 257601 (2016).

    Article  Google Scholar 

  23. Haeni, J. H. et al. Room-temperature ferroelectricity in strained SrTiO3 . Nature 430, 758–761 (2004).

    Article  CAS  Google Scholar 

  24. Zubko, P., Catalan, G., Buckley, A., Welche, P. R. L. & Scott, J. F. Strain-gradient-induced polarization in SrTiO3 single crystals. Phys. Rev. Lett. 99, 167601 (2007).

    Article  CAS  Google Scholar 

  25. Erlich, Z. et al. Optical study of tetragonal domains in LaAlO3/SrTiO3 . J. Supercond. Nov. Magn. 28, 1017–1020 (2015).

    Article  CAS  Google Scholar 

  26. Frenkel, Y. et al. Anisotropic transport at the LaAlO3 /SrTiO3 interface explained by microscopic imaging of channel-flow over SrTiO3 domains. ACS Appl. Mater. Interfaces 8, 12514–12519 (2016).

    Article  CAS  Google Scholar 

  27. Kityk, A. et al. Low-frequency superelasticity and nonlinear elastic behavior of SrTiO3 crystals. Phys. Rev. B 61, 946–956 (2000).

    Article  CAS  Google Scholar 

  28. Chrosch, J. & Salje, E. K. H. Near-surface domain structures in uniaxially stressed SrTiO3 . J. Phys. Condens. Matter 10, 2817–2827 (1999).

    Article  Google Scholar 

  29. Sharma, P. et al. Mechanical tuning of LaAlO3/SrTiO3 interface conductivity. Nano Lett. 15, 3547–3551 (2015).

    Article  CAS  Google Scholar 

  30. Harrison, R. J. & Salje, E. K. H. Ferroic switching, avalanches, and the Larkin length: needle domains in LaAlO3 . Appl. Phys. Lett. 99, 9–12 (2011).

    Article  Google Scholar 

  31. Goswami, S., Mulazimoglu, E., Vandersypen, L. M. K. & Caviglia, A. D. Nanoscale electrostatic control of oxide interfaces. Nano Lett. 15, 2627–2632 (2015).

    Article  CAS  Google Scholar 

  32. Stolichnov, I. et al. Persistent conductive footprints of 109 domain walls in bismuth ferrite films. Appl. Phys. Lett. 104, 132902 (2014).

    Article  Google Scholar 

  33. Kagawa, F., Minami, N., Horiuchi, S. & Tokura, Y. A thermal domain-wall creep near a ferroelectric quantum critical point. Nat. Commun. 7, 10675 (2016).

    Article  CAS  Google Scholar 

  34. Bell, C., Harashima, S., Hikita, Y. & Hwang, H. Y. Thickness dependence of the mobility at the LaAlO3/SrTiO3 interface. Appl. Phys. Lett. 94, 222111 (2009).

    Article  Google Scholar 

  35. Simon, S. H. Comment on ‘Evidence for an anisotropic state of two-dimensional electrons in high Landau levels’. Phys. Rev. Lett. 394, 4223 (1999).

    Article  Google Scholar 

  36. Wortman, J. J. & Evans, R. A. Young’s modulus, shear modulus, and Poisson’s ratio in silicon and germanium. J. Appl. Phys. 36, 153–156 (1965).

    Article  CAS  Google Scholar 

  37. Biegalski, M. D. et al. Critical thickness of high structural quality SrTiO3 films grown on orthorhombic (101) DyScO3 . J. Appl. Phys. 104, 1–11 (2008).

    Article  Google Scholar 

  38. Scott, J. F. & Ledbetter, H. Interpretation of elastic anomalies in SrTiO3 at 37K. Z. Phys. B 639, 635–639 (1997).

    Article  Google Scholar 

Download references

Acknowledgements

Y.F., N.H., Y.S. and B.K. were supported by the European Research Council grant ERC-2014-STG-639792 and Israel Science Foundation grant ISF-1102/13 and ISF-1281/17. Z.C., Y.H. and H.Y.H. acknowledge support by the Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under contract DE-AC02–76SF00515 (Y.H.), and the Gordon and Betty Moore Foundation’s EPiQS Initiative through grant GBMF4415 (Z.C.). E.K.H.S. was supported by EPSRC grant EP/P024904/1.

Author information

Authors and Affiliations

Authors

Contributions

Y.F., Y.S. and B.K. designed the experiment and performed the measurements. C.B., Y.X., Z.C., Y.H. and H.Y.H. provided the samples, N.H. contributed to the simulations and E.K.H.S. contributed to the interpretation of the data. Y.F. and B.K. prepared the manuscript with input from all co-authors.

Corresponding author

Correspondence to Beena Kalisky.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 644 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Frenkel, Y., Haham, N., Shperber, Y. et al. Imaging and tuning polarity at SrTiO3 domain walls. Nature Mater 16, 1203–1208 (2017). https://doi.org/10.1038/nmat4966

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4966

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing