Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Observation of the spin Nernst effect


The observation of the spin Hall effect1,2,3 triggered intense research on pure spin current transport4. With the spin Hall effect1,2,5,6, the spin Seebeck effect 7,8,9 and the spin Peltier effect 10,11 already observed, our picture of pure spin current transport is almost complete. The only missing piece is the spin Nernst (–Ettingshausen) effect, which so far has been discussed only on theoretical grounds12,13,14,15. Here, we report the observation of the spin Nernst effect. By applying a longitudinal temperature gradient, we generate a pure transverse spin current in a Pt thin film. For readout, we exploit the magnetization-orientation-dependent spin transfer to an adjacent yttrium iron garnet layer, converting the spin Nernst current in Pt into a controlled change of the longitudinal and transverse thermopower voltage. Our experiments show that the spin Nernst and the spin Hall effect in Pt are of comparable magnitude, but differ in sign, as corroborated by first-principles calculations.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Charge- and spin-related electric and thermal effects.
Figure 2: Boundary conditions for the spin Nernst magneto-thermopower (SMT).
Figure 3: Experimental detection of the spin Nernst magneto-thermopower.


  1. Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Observation of the spin Hall effect in semiconductors. Science 306, 1910–1913 (2004).

    Article  CAS  Google Scholar 

  2. Wunderlich, J., Kaestner, B., Sinova, J. & Jungwirth, T. Experimental observation of the spin-Hall effect in a two-dimensional spin–orbit coupled semiconductor system. Phys. Rev. Lett. 94, 047204 (2005).

    Article  CAS  Google Scholar 

  3. Wunderlich, J. et al. Spin Hall effect transistor. Science 330, 1801–1804 (2010).

    Article  CAS  Google Scholar 

  4. Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 87, 1213–1259 (2015).

    Article  Google Scholar 

  5. Valenzuela, S. O. & Tinkham, M. Direct electronic measurement of the spin Hall effect. Nature 442, 176–179 (2006).

    Article  CAS  Google Scholar 

  6. Saitoh, E., Ueda, M., Miyajima, H. & Tatara, G. Conversion of spin current into charge current at room temperature: inverse spin-Hall effect. Appl. Phys. Lett. 88, 182509 (2006).

    Article  Google Scholar 

  7. Uchida, K. et al. Observation of the spin Seebeck effect. Nature 455, 778–781 (2008).

    Article  CAS  Google Scholar 

  8. Jaworski, C. M. et al. Observation of the spin-Seebeck effect in a ferromagnetic semiconductor. Nat. Mater. 9, 898–903 (2010).

    Article  CAS  Google Scholar 

  9. Uchida, K. et al. Observation of longitudinal spin-Seebeck effect in magnetic insulators. Appl. Phys. Lett. 97, 172505 (2010).

    Article  Google Scholar 

  10. Flipse, J., Bakker, F. L., Slachter, A., Dejene, F. K. & van Wees, B. J. Direct observation of the spin-dependent Peltier effect. Nat. Nanotech. 7, 166–168 (2012).

    Article  CAS  Google Scholar 

  11. Flipse, J. et al. Observation of the spin Peltier effect for magnetic insulators. Phys. Rev. Lett. 113, 027601 (2014).

    Article  CAS  Google Scholar 

  12. Cheng, S., Xing, Y., Sun, Q. & Xie, X. C. Spin Nernst effect and Nernst effect in two-dimensional electron systems. Phys. Rev. B 78, 045302 (2008).

    Article  Google Scholar 

  13. Liu, X. & Xie, X. Spin Nernst effect in the absence of a magnetic field. Solid State Commun. 150, 471–474 (2010).

    Article  CAS  Google Scholar 

  14. Tauber, K., Gradhand, M., Fedorov, D. V. & Mertig, I. Extrinisc spin Nernst effect from first principles. Phys. Rev. Lett. 109, 026601 (2012).

    Article  Google Scholar 

  15. Wimmer, S., Ködderitzsch, D., Chadova, K. & Ebert, H. First-principles linear response description of the spin Nernst effect. Phys. Rev. B 88, 201108 (2013).

    Article  Google Scholar 

  16. Hall, E. On a new action of the magnet on electric currents. Am. J. Math. 2, 287–292 (1879).

    Article  Google Scholar 

  17. Von Ettingshausen, A. & Nernst, W. Ueber das Auftreten electromotorischer Kräfte in Metallplatten, welche von einem Wärmestrome durchflossen werden und sich im magnetischen Felde befinden. Ann. Phys. 265, 343–347 (1886).

    Article  Google Scholar 

  18. Chazalviel, J. N. & Solomon, I. Experimental evidence of the anomalous Hall effect in a nonmagnetic semiconductor. Phys. Rev. Lett. 29, 1676 (1972).

    Article  CAS  Google Scholar 

  19. D’yakonov, M. I. & Perel’, V. I. Possibility of orienting electron spins with current. JETP Lett. 13, 467–469 (1971).

    Google Scholar 

  20. Hirsch, J. E. Spin Hall effect. Phys. Rev. Lett. 83, 1834 (1999).

    Article  CAS  Google Scholar 

  21. Betthausen, C. et al. Spin-transistor action via tunable Landau–Zener transitions. Science 337, 324–327 (2012).

    Article  CAS  Google Scholar 

  22. Hoffmann, A. Spin Hall effects in metals. IEEE Trans. Magn. 49, 5172–5193 (2013).

    Article  CAS  Google Scholar 

  23. Ralph, D. C. & Stiles, M. D. Spin transfer torques. J. Magn. Magn. Mater. 320, 1190–1216 (2008).

    Article  CAS  Google Scholar 

  24. Brataas, A., Bauer, G. E. & Kelly, P. J. Non-collinear magnetoelectronics. Phys. Rep. 427, 157–255 (2006).

    Article  CAS  Google Scholar 

  25. Nakayama, H. et al. Spin Hall magnetoresistance induced by a nonequilibrium proximity effect. Phys. Rev. Lett. 110, 206601 (2013).

    Article  CAS  Google Scholar 

  26. Vlietstra, N. et al. Exchange magnetic field torques in YIG/Pt bilayers observed by the spin-Hall magnetoresistance. Appl. Phys. Lett. 103, 032401 (2013).

    Article  Google Scholar 

  27. Chen, Y.-T. et al. Theory of spin Hall magnetoresistance. Phys. Rev. B 87, 144411 (2013).

    Article  Google Scholar 

  28. Althammer, M. et al. Quantitative study of the spin Hall magnetoresistance in ferromagnetic insulator/normal metal hybrids. Phys. Rev. B 87, 224401 (2013).

    Article  Google Scholar 

  29. Meyer, S. et al. Temperature dependent spin transport properties of platinum inferred from spin Hall magnetoresistance measurements. Appl. Phys. Lett. 104, 242411 (2014).

    Article  Google Scholar 

  30. Sheng, P., Sakuraba, Y., Takahashi, S., Mitani, S. & Hayashi, M. Signatures of the Spin Nernst effect in Tungsten. Preprint at (2016).

Download references


S.M., M.A., S.G., H.H., R.G. and S.T.B.G. thank A. Erb for the preparation of the stoichiometric YIG target, T. Brenninger for technical support, and N. Vlietstra for the non-local sample preparation. Y.-T.C. and G.E.W.B. acknowledge funding by the FOM (Stichting voor Fundamenteel Onderzoek der Materie), EU- ICT-7 ‘INSPIN’, and Grant-in-Aid for Scientific Research (Grant Nos 25247056, 25220910, 26103006). S.W. thanks S. Tölle and U. Eckern for helpful discussions. All authors acknowledge funding via the DFG Priority program 1538 ‘Spin-Caloric Transport’ (Projects GO 944/4, BA 2954/2 and EB 154/25).

Author information

Authors and Affiliations



S.M., R.S. and T.W. designed the sample layout and carried out the experiments. S.M., Y.-T.C., G.E.W.B., R.G. and S.T.B.G. developed the explanation of the SMT effect. S.G. supervised the sample growth. Y.-T.C. and G.E.W.B. developed the theoretical framework and S.W., D.K. and H.E. performed first-principles calculations of the relevant spin-caloric transport coefficients. S.T.B.G. supervised the experiments. The manuscript was written by S.M., M.A. and S.T.B.G. All authors discussed and participated in writing the manuscript under the guidance of S.M. and G.E.W.B.

Corresponding author

Correspondence to S. T. B. Goennenwein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 846 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Meyer, S., Chen, YT., Wimmer, S. et al. Observation of the spin Nernst effect. Nature Mater 16, 977–981 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing