Letter | Published:

Measurement of the spin temperature of optically cooled nuclei and GaAs hyperfine constants in GaAs/AlGaAs quantum dots

Nature Materials volume 16, pages 982986 (2017) | Download Citation

Abstract

Deep cooling of electron and nuclear spins is equivalent to achieving polarization degrees close to 100% and is a key requirement in solid-state quantum information technologies1,2,3,4,5,6,7. While polarization of individual nuclear spins in diamond2 and SiC (ref. 3) reaches 99% and beyond, it has been limited to 50–65% for the nuclei in quantum dots8,9,10. Theoretical models have attributed this limit to formation of coherent ‘dark’ nuclear spin states11,12,13 but experimental verification is lacking, especially due to the poor accuracy of polarization degree measurements. Here we measure the nuclear polarization in GaAs/AlGaAs quantum dots with high accuracy using a new approach enabled by manipulation of the nuclear spin states with radiofrequency pulses. Polarizations up to 80% are observed—the highest reported so far for optical cooling in quantum dots. This value is still not limited by nuclear coherence effects. Instead we find that optically cooled nuclei are well described within a classical spin temperature framework14. Our findings unlock a route for further progress towards quantum dot electron spin qubits where deep cooling of the mesoscopic nuclear spin ensemble is used to achieve long qubit coherence4,5. Moreover, GaAs hyperfine material constants are measured here experimentally for the first time.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. Quantum-dot spin-state preparation with near-unity fidelity. Science 312, 551–553 (2006).

  2. 2.

    et al. Dynamic polarization of single nuclear spins by optical pumping of nitrogen-vacancy color centers in diamond at room temperature. Phys. Rev. Lett. 102, 057403 (2009).

  3. 3.

    et al. Optical polarization of nuclear spins in silicon carbide. Phys. Rev. Lett. 114, 247603 (2015).

  4. 4.

    , & Coupled quantum dots as quantum gates. Phys. Rev. B 59, 2070–2078 (1999).

  5. 5.

    , & Spin decay and quantum parallelism. Phys. Rev. B 66, 245303 (2002).

  6. 6.

    , , , & Qubit protection in nuclear-spin quantum dot memories. Phys. Rev. Lett. 103, 010502 (2009).

  7. 7.

    , & Quantum simulation of spin ordering with nuclear spins in a solid-state lattice. Phys. Rev. B 75, 094415 (2007).

  8. 8.

    et al. Electron and nuclear spin interactions in the optical spectra of single GaAs quantum dots. Phys. Rev. Lett. 86, 5176–5179 (2001).

  9. 9.

    et al. Pumping of nuclear spins by optical excitation of spin-forbidden transitions in a quantum dot. Phys. Rev. Lett. 104, 066804 (2010).

  10. 10.

    et al. Large nuclear spin polarization in gate-defined quantum dots using a single-domain nanomagnet. Phys. Rev. Lett. 110, 177602 (2013).

  11. 11.

    , , & Optical pumping of quantum-dot nuclear spins. Phys. Rev. Lett. 91, 017402 (2003).

  12. 12.

    , & Quantum description of nuclear spin cooling in a quantum dot. Phys. Rev. B 75, 155324 (2007).

  13. 13.

    , , & Quantum limit for nuclear spin polarization in semiconductor quantum dots. Phys. Rev. B 89, 205302 (2014).

  14. 14.

    Spin Temperature and Nuclear Magnetic Resonance in Solids (Oxford Univ. Press, 1970).

  15. 15.

    et al. Nuclear spin physics in quantum dots: an optical investigation. Rev. Mod. Phys. 85, 79–133 (2013).

  16. 16.

    , & Nonperturbative master equation solution of central spin dephasing dynamics. Phys. Rev. Lett. 109, 140403 (2012).

  17. 17.

    et al. Optically controlled locking of the nuclear field via coherent dark-state spectroscopy. Nature 459, 1105–1109 (2009).

  18. 18.

    , & Quantum interface between light and nuclear spins in quantum dots. Phys. Rev. B 81, 045309 (2010).

  19. 19.

    , & Independent wavelength and density control of uniform GaAs/AlGaAs quantum dots grown by infilling self-assembled nanoholes. J. Appl. Phys. 112, 054303 (2012).

  20. 20.

    & Nuclear spin temperature and magnetization transport in laser-enhanced NMR of bulk GaAs. Phys. Rev. B 71, 045215 (2005).

  21. 21.

    & Optical orientation in a system of electrons and lattice nuclei in semiconductors. Theory. Sov. Phys. JETP 38, 177–183 (1974).

  22. 22.

    , , & Suppression of nuclear spin bath fluctuations in self-assembled quantum dots induced by inhomogeneous strain. Nat. Commun. 6, 6348 (2015).

  23. 23.

    et al. Vanishing electron g factor and long-lived nuclear spin polarization in weakly strained nanohole-filled GaAs/AlGaAs quantum dots. Phys. Rev. B 93, 165306 (2016).

  24. 24.

    et al. Assignments of transitions in optically-pumped NMR of GaAs/AlGaAs quantum wells on a bulk GaAs substrate. Phys. Rev. B 90, 125301 (2014).

  25. 25.

    , & Light-induced nuclear quadrupolar relaxation in semiconductors. Phys. Rev. B 77, 245201 (2008).

  26. 26.

    & First-principles calculations of hyperfine parameters. Phys. Rev. B 47, 4244–4255 (1993).

  27. 27.

    et al. Optical addressing of an individual erbium ion in silicon. Nature 497, 91–94 (2013).

  28. 28.

    Density of the conduction electrons at the nuclei in indium antimonide. Phys. Rev. 135, A200–A205 (1964).

  29. 29.

    , , & Low field electron–nuclear spin coupling in gallium arsenide under optical pumping conditions. Phys. Rev. B 15, 5780–5796 (1977).

  30. 30.

    , & Breakdown of the nuclear-spin-temperature approach in quantum-dot demagnetization experiments. Nat. Phys. 5, 407–411 (2009).

  31. 31.

    Structural analysis of strained quantum dots using nuclear magnetic resonance. Nat. Nanotech. 7, 646–650 (2012).

Download references

Acknowledgements

The authors are grateful to A. Rastelli (JKU Linz), Y. Huo (HFNL Hefei), A. Waeber (TU Munich) and P. Atkinson (CNRS Paris) for fruitful discussions. This work has been supported by the EPSRC Programme Grants EP/J007544/1 and EP/N031776/1. E.A.C. was supported by a University of Sheffield Vice-Chancellor’s Fellowship and a Royal Society University Research Fellowship.

Author information

Affiliations

  1. Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, UK

    • E. A. Chekhovich
    • , A. Ulhaq
    •  & M. S. Skolnick
  2. School of Science and Engineering, Lahore University of Management Sciences (LUMS), Sector U, D.H.A, Lahore 54792, Pakistan

    • A. Ulhaq
  3. Institute for Integrative Nanoscience, IFW Dresden, Helmholtz str. D-01069, Dresden, Germany

    • E. Zallo
    • , F. Ding
    •  & O. G. Schmidt
  4. Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117 Berlin, Germany

    • E. Zallo
  5. Institut für Festkörperphysik, Leibniz Universität Hannover, Appelstrasse 2, 30167 Hannover, Germany

    • F. Ding

Authors

  1. Search for E. A. Chekhovich in:

  2. Search for A. Ulhaq in:

  3. Search for E. Zallo in:

  4. Search for F. Ding in:

  5. Search for O. G. Schmidt in:

  6. Search for M. S. Skolnick in:

Contributions

E.Z., F.D. and O.G.S. designed and grew the samples. E.A.C. and A.U. developed the techniques and conducted the experiments. E.A.C. conceived the project and analysed the data. E.A.C. and M.S.S. wrote the manuscript with input from all authors.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to E. A. Chekhovich.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nmat4959