Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hydrogels with precisely controlled integrin activation dictate vascular patterning and permeability

Abstract

Integrin binding to bioengineered hydrogel scaffolds is essential for tissue regrowth and regeneration, yet not all integrin binding can lead to tissue repair. Here, we show that through engineering hydrogel materials to promote α3/α5β1 integrin binding, we can promote the formation of a space-filling and mature vasculature compared with hydrogel materials that promote αvβ3 integrin binding. In vitro, α3/α5β1 scaffolds promoted endothelial cells to sprout and branch, forming organized extensive networks that eventually reached and anastomosed with neighbouring branches. In vivo, α3/α5β1 scaffolds delivering vascular endothelial growth factor (VEGF) promoted non-tortuous blood vessel formation and non-leaky blood vessels by 10 days post-stroke. In contrast, materials that promote αvβ3 integrin binding promoted endothelial sprout clumping in vitro and leaky vessels in vivo. This work shows that precisely controlled integrin activation from a biomaterial can be harnessed to direct therapeutic vessel regeneration and reduce VEGF-induced vascular permeability in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Endothelial cell sprouting in αvβ3-specific matrices displays clustered branches.
Figure 2: Endothelial cell sprout clustering is partially rescued with αv-blocking.
Figure 3: αvβ3 integrin engagement disrupts VE-cadherin in HUVECs.
Figure 4: Modulation of vascular patterning in skin using integrin-specific hydrogels.
Figure 5: Integrin-specific hydrogels modulate vascular patterning and permeability after stroke.
Figure 6: α3/α5β1 and αvβ3 integrin-specific materials regulate vascular patterning in vitro and in vivo.

Similar content being viewed by others

References

  1. Martino, M. M. et al. Engineering the growth factor microenvironment with fibronectin domains to promote wound and bone tissue healing. Sci. Transl. Med. 3, 100ra189 (2011).

    Article  CAS  Google Scholar 

  2. Briquez, P. S., Clegg, L. E., Martino, M. M., Gabhann, F. M. & Hubbell, J. A. Design principles for therapeutic angiogenic materials. Nat. Rev. Mater. 1, 15006 (2016).

    Article  CAS  Google Scholar 

  3. Hynes, R. O. Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687 (2002).

    Article  CAS  Google Scholar 

  4. Hynes, R. O. The extracellular matrix: not just pretty fibrils. Science 326, 1216–1219 (2009).

    Article  CAS  Google Scholar 

  5. Giancotti, F. G. & Ruoslahti, E. Integrin signaling. Science 285, 1028–1032 (1999).

    Article  CAS  Google Scholar 

  6. Zovein, A. C. et al. β1 integrin establishes endothelial cell polarity and arteriolar lumen formation via a par3-dependent mechanism. Dev. Cell 18, 39–51 (2010).

    Article  CAS  Google Scholar 

  7. Rupp, P. A. & Little, C. D. Integrins in vascular development. Circ. Res. 89, 566–572 (2001).

    Article  CAS  Google Scholar 

  8. Bayless, K. J., Salazar, R. & Davis, G. E. RGD-dependent vacuolation and lumen formation observed during endothelial cell morphogenesis in three-dimensional fibrin matrices involves the α(v)β(3) and α(5)β(1) integrins. Am. J. Pathol. 156, 1673–1683 (2000).

    Article  CAS  Google Scholar 

  9. Yamamoto, H. et al. Integrin β1 controls VE-cadherin localization and blood vessel stability. Nat. Commun. 6, 6429 (2015).

    Article  CAS  Google Scholar 

  10. Hodivala-Dilke, K. M. et al. Beta3-integrin-deficient mice are a model for Glanzmann thrombasthenia showing placental defects and reduced survival. J. Clin. Invest. 103, 229–238 (1999).

    Article  CAS  Google Scholar 

  11. Abraham, S., Kogata, N., Fassler, R. & Adams, R. H. Integrin β1 subunit controls mural cell adhesion, spreading, and blood vessel wall stability. Circ. Res. 102, 562–570 (2008).

    Article  CAS  Google Scholar 

  12. Milner, R. & Campbell, I. L. Developmental regulation of β1 integrins during angiogenesis in the central nervous system. Mol. Cell Neurosci. 20, 616–626 (2002).

    Article  CAS  Google Scholar 

  13. Brooks, P. C., Clark, R. A. & Cheresh, D. A. Requirement of vascular integrin α v β 3 for angiogenesis. Science 264, 569–571 (1994).

    Article  CAS  Google Scholar 

  14. Tonnesen, M. G., Feng, X. & Clark, R. A. Angiogenesis in wound healing. J. Invest. Dermatol. Symp. Proc. 5, 40–46 (2000).

    Article  CAS  Google Scholar 

  15. Friedlander, M. et al. Definition of two angiogenic pathways by distinct α v integrins. Science 270, 1500–1502 (1995).

    Article  CAS  Google Scholar 

  16. Carroll, J. M., Romero, M. R. & Watt, F. M. Suprabasal integrin expression in the epidermis of transgenic mice results in developmental defects and a phenotype resembling psoriasis. Cell 83, 957–968 (1995).

    Article  CAS  Google Scholar 

  17. Reynolds, L. E. et al. Enhanced pathological angiogenesis in mice lacking β3 integrin or β3 and β5 integrins. Nat. Med. 8, 27–34 (2002).

    Article  CAS  Google Scholar 

  18. Alghisi, G. C., Ponsonnet, L. & Ruegg, C. The integrin antagonist cilengitide activates αVβ3, disrupts VE-cadherin localization at cell junctions and enhances permeability in endothelial cells. PLoS ONE 4, e4449 (2009).

    Article  Google Scholar 

  19. Weis, S. M. et al. Cooperation between VEGF and β3 integrin during cardiac vascular development. Blood 109, 1962–1970 (2007).

    Article  CAS  Google Scholar 

  20. Mhanna, R. GFOGER-modified MMP-sensitive polyethylene glycol hydrogels induce chondrogenic differentiation of human mesenchymal stem cells. Tissue Eng. A 20, 1165–1174 (2014).

    CAS  Google Scholar 

  21. Shekaran, A. et al. Bone regeneration using an α 2 β 1 integrin-specific hydrogel as a BMP-2 delivery vehicle. Biomaterials 35, 5453–5461 (2014).

    Article  CAS  Google Scholar 

  22. Lee, S. T. et al. Engineering integrin signaling for promoting embryonic stem cell self-renewal in a precisely defined niche. Biomaterials 31, 1219–1226 (2010).

    Article  CAS  Google Scholar 

  23. Krammer, A., Craig, D., Thomas, W. E., Schulten, K. & Vogel, V. A structural model for force regulated integrin binding to fibronectin’s RGD-synergy site. Matrix Biol. 21, 139–147 (2002).

    Article  CAS  Google Scholar 

  24. Grant, R. P., Spitzfaden, C., Altroff, H., Campbell, I. D. & Mardon, H. J. Structural requirements for biological activity of the ninth and tenth FIII domains of human fibronectin. J. Biol. Chem. 272, 6159–6166 (1997).

    Article  CAS  Google Scholar 

  25. Martino, M. M. et al. Controlling integrin specificity and stem cell differentiation in 2D and 3D environments through regulation of fibronectin domain stability. Biomaterials 30, 1089–1097 (2009).

    Article  CAS  Google Scholar 

  26. Brown, A. C., Rowe, J. A. & Barker, T. H. Guiding epithelial cell phenotypes with engineered integrin-specific recombinant fibronectin fragments. Tissue Eng. A 17, 139–150 (2011).

    CAS  Google Scholar 

  27. Altroff, H. et al. Interdomain tilt angle determines integrin-dependent function of the ninth and tenth FIII domains of human fibronectin. J. Biol. Chem. 279, 55995–56003 (2004).

    Article  CAS  Google Scholar 

  28. Brown, A. C., Dysart, M. M., Clarke, K. C., Stabenfeldt, S. E. & Barker, T. H. Integrin α3β1 binding to fibronectin is dependent on the ninth type III repeat. J. Biol. Chem. 290, 25534–25547 (2015).

    Article  CAS  Google Scholar 

  29. Markowski, M. C., Brown, A. C. & Barker, T. H. Directing epithelial to mesenchymal transition through engineered microenvironments displaying orthogonal adhesive and mechanical cues. J. Biomed. Mater. Res. A 100, 2119–2127 (2012).

    Article  CAS  Google Scholar 

  30. Schense, J. C. & Hubbell, J. A. Cross-linking exogenous bifunctional peptides into fibrin gels with factor XIIIa. Bioconjug. Chem. 10, 75–81 (1999).

    Article  CAS  Google Scholar 

  31. Hoeben, A. et al. Vascular endothelial growth factor and angiogenesis. Pharmacol. Rev. 56, 549–580 (2004).

    Article  CAS  Google Scholar 

  32. Nakatsu, M. N., Davis, J. & Hughes, C. C. Optimized fibrin gel bead assay for the study of angiogenesis. J. Vis. Exp. 3, 186 (2007).

    Google Scholar 

  33. Carmeliet, P. & Jain, R. K. Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2000).

    Article  CAS  Google Scholar 

  34. Santulli, R. J. et al. Studies with an orally bioavailable α V integrin antagonist in animal models of ocular vasculopathy: retinal neovascularization in mice and retinal vascular permeability in diabetic rats. J. Pharmacol. Exp. Ther. 324, 894–901 (2008).

    Article  CAS  Google Scholar 

  35. Cao, L. et al. Detection of an integrin-binding mechanoswitch within fibronectin during tissue formation and fibrosis. ACS Nano Article ASAPhttp://dx.doi.org/10.1021/acsnano.7b02755

  36. Aota, S., Nomizu, M. & Yamada, K. M. The short amino acid sequence Pro-His-Ser-Arg-Asn in human fibronectin enhances cell-adhesive function. J. Biol. Chem. 269, 24756–24761 (1994).

    CAS  Google Scholar 

  37. Danen, E. H. et al. Requirement for the synergy site for cell adhesion to fibronectin depends on the activation state of integrin α 5 β 1. J. Biol. Chem. 270, 21612–21618 (1995).

    Article  CAS  Google Scholar 

  38. Mogford, J. E., Davis, G. E., Platts, S. H. & Meininger, G. A. Vascular smooth muscle α v β 3 integrin mediates arteriolar vasodilation in response to RGD peptides. Circ. Res. 79, 821–826 (1996).

    Article  CAS  Google Scholar 

  39. Desgrosellier, J. S. & Cheresh, D. A. Integrins in cancer: biological implications and therapeutic opportunities. Nat. Rev. Cancer 10, 9–22 (2010).

    Article  CAS  Google Scholar 

  40. Henderson, N. C. et al. Targeting of αv integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat. Med. 19, 1617–1624 (2013).

    Article  CAS  Google Scholar 

  41. Liu, Z., Wang, F. & Chen, X. Integrin α(v)β(3)-targeted cancer therapy. Drug Dev. Res. 69, 329–339 (2008).

    CAS  Google Scholar 

  42. Lam, J. & Segura, T. The modulation of MSC integrin expression by RGD presentation. Biomaterials 34, 3938–3947 (2013).

    Article  CAS  Google Scholar 

  43. Chen, T. T. et al. Anchorage of VEGF to the extracellular matrix conveys differential signaling responses to endothelial cells. J. Cell Biol. 188, 595–609 (2010).

    Article  CAS  Google Scholar 

  44. Adams, R. H. & Alitalo, K. Molecular regulation of angiogenesis and lymphangiogenesis. Nat. Rev. Mol. Cell Biol. 8, 464–478 (2007).

    Article  CAS  Google Scholar 

  45. Lenard, A. et al. In vivo analysis reveals a highly stereotypic morphogenetic pathway of vascular anastomosis. Dev. Cell 25, 492–506 (2013).

    Article  CAS  Google Scholar 

  46. Wallez, Y., Vilgrain, I. & Huber, P. Angiogenesis: the VE-cadherin switch. Trends Cardiovasc. Med. 16, 55–59 (2006).

    Article  CAS  Google Scholar 

  47. Montero-Balaguer, M. et al. Stable vascular connections and remodeling require full expression of VE-cadherin in zebrafish embryos. PLoS ONE 4, e5772 (2009).

    Article  CAS  Google Scholar 

  48. Lei, Y. & Segura, T. DNA delivery from matrix metalloproteinase degradable poly(ethylene glycol) hydrogels to mouse cloned mesenchymal stem cells. Biomaterials 30, 254–265 (2009).

    Article  CAS  Google Scholar 

  49. Zhu, S., Nih, L., Carmichael, S. T., Lu, Y. & Segura, T. Enzyme-responsive delivery of multiple proteins with spatiotemporal control. Adv. Mater. 27, 3620–3625 (2015).

    Article  CAS  Google Scholar 

  50. Andres, R. H. et al. The CCR2/CCL2 interaction mediates the transendothelial recruitment of intravascularly delivered neural stem cells to the ischemic brain. Stroke 42, 2923–2931 (2011).

    Article  Google Scholar 

  51. Arai, K., Jin, G., Navaratna, D. & Lo, E. H. Brain angiogenesis in developmental and pathological processes: neurovascular injury and angiogenic recovery after stroke. FEBS J. 276, 4644–4652 (2009).

    Article  CAS  Google Scholar 

  52. Giacca, M. & Zacchigna, S. VEGF gene therapy: therapeutic angiogenesis in the clinic and beyond. Gene Ther. 19, 622–629 (2012).

    Article  CAS  Google Scholar 

  53. Roberts, W. G. & Palade, G. E. Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor. J. Cell Sci. 108, 2369–2379 (1995).

    CAS  Google Scholar 

  54. Esser, S. et al. Vascular endothelial growth factor induces endothelial fenestrations in vitro. J. Cell Biol. 140, 947–959 (1998).

    Article  CAS  Google Scholar 

  55. Lin, H. B., Zhao, Z. C., Garcia-Echeverria, C., Rich, D. H. & Cooper, S. L. Synthesis of a novel polyurethane co-polymer containing covalently attached RGD peptide. J. Biomater. Sci. Polym. Ed. 3, 217–227 (1992).

    Article  CAS  Google Scholar 

  56. Ghosh, K., Ren, X. D., Shu, X. Z., Prestwich, G. D. & Clark, R. A. Fibronectin functional domains coupled to hyaluronan stimulate adult human dermal fibroblast responses critical for wound healing. Tissue Eng. 12, 601–613 (2006).

    Article  CAS  Google Scholar 

  57. Hou, S. et al. The repair of brain lesion by implantation of hyaluronic acid hydrogels modified with laminin. J. Neurosci. Meth. 148, 60–70 (2005).

    Article  CAS  Google Scholar 

  58. Nakatsu, M. N. et al. Angiogenic sprouting and capillary lumen formation modeled by human umbilical vein endothelial cells (HUVEC) in fibrin gels: the role of fibroblasts and Angiopoietin-1. Microvasc. Res. 66, 102–112 (2003).

    Article  CAS  Google Scholar 

  59. Lei, Y., Gojgini, S., Lam, J. & Segura, T. The spreading, migration and proliferation of mouse mesenchymal stem cells cultured inside hyaluronic acid hydrogels. Biomaterials 32, 39–47 (2011).

    Article  CAS  Google Scholar 

  60. Cam, C. & Segura, T. Chemical sintering generates uniform porous hyaluronic acid hydrogels. Acta Biomater. 10, 205–213 (2014).

    Article  CAS  Google Scholar 

  61. Carmichael, S. T. Rodent models of focal stroke: size, mechanism, and purpose. NeuroRx 2, 396–409 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Y. Chen and X. Chen for their help with flow cytometry. The authors would like to acknowledge Developmental Studies Hybridoma Bank (DSHB) for providing antibodies P3G8, AIIB2, BIIG2 and 9H5. This work was supported by National Institutes of Health R01NS079691 (T.S.).

Author information

Authors and Affiliations

Authors

Contributions

S.L. contributed to conceptual design, experimental execution, and troubleshooting. L.R.N. contributed to conceptual design, experimental execution, and troubleshooting for experiments involving the middle cerebral artery occlusion stroke model (Fig. 5). H.B. contributed to conceptual design, troubleshooting and production of the Fn910 and Fn9(4G)10 fibronectin fragments. P.F. contributed to conceptual design and troubleshooting of sheet confocal imaging for the modified Matrigel plug assay. Y.L. contributed to the conceptual design and experimental execution of the Matlab code used for cell migration analysis in Supplementary Fig. 1e, f. E.N. contributed to experimental execution and troubleshooting for experiments involving VE-cadherin quantification. R.D. contributed to the conceptual design and experimental execution of the Matlab code used for space-filling analysis in Fig. 4d. S.T.C. contributed to the conceptual design, and data interpretation for Fig. 5. T.H.B. contributed to conceptual design and troubleshooting of the Fn910 and Fn9(4G)10 fibronectin fragments. T.S. contributed to conceptual design, and oversaw all experimental design and interpretation. While S.L. and T.S. wrote the first draft of the manuscript all authors read and gave comments, especially with regards to their experimental section and analysis.

Corresponding author

Correspondence to Tatiana Segura.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 17836 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Nih, L., Bachman, H. et al. Hydrogels with precisely controlled integrin activation dictate vascular patterning and permeability. Nature Mater 16, 953–961 (2017). https://doi.org/10.1038/nmat4954

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4954

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research