Abstract

Weyl (WSMs) evolve from Dirac semimetals in the presence of broken time-reversal symmetry (TRS) or space-inversion symmetry. The WSM phases in TaAs-class materials and photonic crystals are due to the loss of space-inversion symmetry. For TRS-breaking WSMs, despite numerous theoretical and experimental efforts, few examples have been reported. In this Article, we report a new type of magnetic semimetal Sr1−yMn1−zSb2 (y, z < 0.1) with nearly massless relativistic fermion behaviour (m =  0.04 − 0.05m0, where m0 is the free-electron mass). This material exhibits a ferromagnetic order for 304 K  <  T  <  565 K, but a canted antiferromagnetic order with a ferromagnetic component for T  <  304 K. The combination of relativistic fermion behaviour and ferromagnetism in Sr1−yMn1−zSb2 offers a rare opportunity to investigate the interplay between relativistic fermions and spontaneous TRS breaking.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. Dirac semimetal and topological phase transitions in A3Bi(A  =  Na, K, Rb). Phys. Rev. B 85, 195320 (2012).

  2. 2.

    et al. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi. Science 343, 864–867 (2014).

  3. 3.

    , , , & Three-dimensional Dirac semimetal and quantum transport in Cd3As2. Phys. Rev. B 88, 125427 (2013).

  4. 4.

    et al. A stable three-dimensional topological Dirac semimetal Cd3As2. Nat. Mater. 13, 677–681 (2014).

  5. 5.

    et al. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2. Nat. Commun. 5, 3786 (2014).

  6. 6.

    et al. Experimental realization of a three-dimensional Dirac semimetal. Phys. Rev. Lett. 113, 027603 (2014).

  7. 7.

    et al. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2. Nat. Mater. 14, 280–284 (2015).

  8. 8.

    et al. Linear magnetoresistance caused by mobility fluctuations in n-doped Cd3As2. Phys. Rev. Lett. 114, 117201 (2015).

  9. 9.

    et al. Chiral magnetic effect in ZrTe5. Nat. Phys. 12, 550–554 (2016).

  10. 10.

    et al. Topological nodal-line fermions in spin–orbit metal PbTaSe2. Nat. Commun. 7, 10556 (2016).

  11. 11.

    et al. Dirac node arcs in PtSn4. Nat. Phys. 12, 667–671 (2016).

  12. 12.

    et al. Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS. Nat. Commun. 7, 11696 (2016).

  13. 13.

    et al. A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class. Nat. Commun. 6, 7373 (2015).

  14. 14.

    , , , & Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys. Rev. X 5, 011029 (2015).

  15. 15.

    , , & Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

  16. 16.

    & The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal. Phys. Lett. B 130, 389–396 (1983).

  17. 17.

    & Chiral anomaly and classical negative magnetoresistance of Weyl metals. Phys. Rev. B 88, 104412 (2013).

  18. 18.

    & Interplay between interaction and chiral anomaly: anisotropy in the electrical resistivity of interacting Weyl metals. Phys. Rev. B 87, 205133 (2013).

  19. 19.

    et al. Weyl semimetal phase in the non-centrosymmetric compound TaAs. Nat. Phys. 11, 728–732 (2015).

  20. 20.

    et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015).

  21. 21.

    et al. Observation of Weyl nodes and Fermi arcs in tantalum phosphide. Nat. Commun. 7, 11006 (2015).

  22. 22.

    et al. Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X 5, 031013 (2015).

  23. 23.

    et al. Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide. Nat. Phys. 11, 748–754 (2015).

  24. 24.

    et al. Experimental observation of Weyl points. Science 349, 622–624 (2015).

  25. 25.

    et al. Time-reversal symmetry breaking type-II Weyl state in YbMnBi2. Preprint at (2015).

  26. 26.

    et al. Anisotropic Dirac fermions in a Bi square net of SrMnBi2. Phys. Rev. Lett. 107, 126402 (2011).

  27. 27.

    et al. Strong anisotropy of Dirac cones in SrMnBi2 and CaMnBi2 revealed by angle-resolved photoemission spectroscopy. Sci. Rep. 4, 05385 (2014).

  28. 28.

    et al. Quantum Hall effect in a bulk antiferromagnet EuMnBi2 with magnetically confined two-dimensional Dirac fermions. Sci. Adv. 2, e1501117 (2016).

  29. 29.

    , & AEMnSb2 (AE  =  Sr, Ba): a new class of Dirac materials. J. Phys. Condens. Matter 26, 042201 (2014).

  30. 30.

    et al. Nearly massless Dirac fermions hosted by Sb square net in BaMnSb2. Sci. Rep. 6, 30525 (2016).

  31. 31.

    , & Neue ternäre erdalkali-übergangselement-pnictide. J. Less-Common Met. 79, 131–138 (1981).

  32. 32.

    High magnetic fields: a tool for studying electronic properties of layered organic metals. Chem. Rev. 104, 5737–5782 (2004).

  33. 33.

    et al. Quantum transport evidence for the three-dimensional Dirac semimetal phase in Cd3As2. Phys. Rev. Lett. 113, 246402 (2014).

  34. 34.

    et al. Anisotropic Fermi surface and quantum limit transport in high mobility three-dimensional Dirac semimetal Cd3As2. Phys. Rev. X 5, 031037 (2015).

  35. 35.

    & Berry phase of nonideal Dirac fermions in topological insulators. Phys. Rev. B 84, 035301 (2011).

  36. 36.

    et al. High-field Shubnikov–de Haas oscillations in the topological insulator Bi2Te2Se. Phys. Rev. B 86, 045314 (2012).

  37. 37.

    Topological insulator materials. J. Phys. Soc. Jpn 82, 102001 (2013).

  38. 38.

    et al. Coupling of magnetic order to planar Bi electrons in the anisotropic Dirac metals AMnBi2 (A = Sr, Ca). Phys. Rev. B 90, 075120 (2014).

  39. 39.

    et al. Two-dimensional Dirac fermions in YbMnBi2 antiferromagnet. Phys. Rev. B 94, 165161 (2016).

  40. 40.

    et al. Unusual interlayer quantum transport behavior caused by the zeroth Landau level in YbMnBi2. Preprint at (2016).

  41. 41.

    , , , & Nontrivial Berry phase in magnetic BaMnSb2 semimetal. Proc. Natl Acad. Sci. USA 114, 6256–6261 (2017).

  42. 42.

    et al. π Berry phase and Zeeman splitting of Weyl semimetal TaP. Sci. Rep. 6, 18674 (2016).

  43. 43.

    & Theory of magnetic susceptibility in metals at low temperatures. Sov. Phys. JETP 2, 636–645 (1956).

  44. 44.

    Magnetic Oscillations in Metals (Cambridge Univ. Press, 1984).

  45. 45.

    & Manifestation of Berry’s phase in metal physics. Phys. Rev. Lett. 82, 2147–2150 (1999).

  46. 46.

    et al. Four-circle single-crystal neutron diffractometer at the High Flux Isotope Reactor. J. Appl. Crystallogr. 44, 655–658 (2011).

  47. 47.

    A new protocol for the determination of magnetic structures using simulated annealing and representational analysis (SARAh). Physica B 276–278, 680–681 (2000).

  48. 48.

    Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192, 55–69 (1993).

Download references

Acknowledgements

The authors thank C. Wu at UCSD for helpful discussions. The work at Tulane University was supported by the NSF under Grant DMR-1205469 (support for personnel and materials) and Louisiana Board of Regents under grant LEQSF(2014-15)-ENH-TR-24 (support for equipment purchase). The neutron scattering work used resources at the High Flux Isotope Reactor, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory, and is supported by the US Department of Energy under EPSCoR Grant No. DE-SC0012432 with additional support from the Louisiana Board of Regents. The work at UNO is supported by the NSF under the NSF EPSCoR Cooperative Agreement No. EPS-1003897 with additional support from the Louisiana Board of Regents. The work at FSU and at the National High Magnetic Field Laboratory is supported by the NSF grant No. DMR-1206267, the NSF Cooperative Agreement No. DMR-1157490, and the State of Florida. Work at LANL was supported by the US DOE Basic Energy Science project ‘Science at 100 Tesla’. The authors also acknowledge support from grant DOE DE-NA0001979.

Author information

Author notes

    • J. Y. Liu
    • , J. Hu
    •  & Q. Zhang

    These authors contributed equally to this work.

Affiliations

  1. Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70018, USA

    • J. Y. Liu
    • , J. Hu
    • , Y. L. Zhu
    • , G. F. Cheng
    • , X. Liu
    • , J. Wei
    •  & Z. Q. Mao
  2. Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA

    • Q. Zhang
    • , W. A. Phelan
    •  & J. F. DiTusa
  3. Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

    • Q. Zhang
    • , H. B. Cao
    •  & D. A. Tennant
  4. National High Magnetic Field Laboratory, Tallahassee, Florida 32310, USA

    • D. Graf
    •  & I. Chiorescu
  5. Department of Physics and Advanced Materials Research Institute, University of New Orleans, New Orleans, Louisiana 70148, USA

    • S. M. A. Radmanesh
    • , D. J. Adams
    •  & L. Spinu
  6. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China

    • G. F. Cheng
  7. Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

    • M. Jaime
    •  & F. Balakirev
  8. Department of Physics, Florida State University, Tallahassee, Florida 32306, USA

    • I. Chiorescu

Authors

  1. Search for J. Y. Liu in:

  2. Search for J. Hu in:

  3. Search for Q. Zhang in:

  4. Search for D. Graf in:

  5. Search for H. B. Cao in:

  6. Search for S. M. A. Radmanesh in:

  7. Search for D. J. Adams in:

  8. Search for Y. L. Zhu in:

  9. Search for G. F. Cheng in:

  10. Search for X. Liu in:

  11. Search for W. A. Phelan in:

  12. Search for J. Wei in:

  13. Search for M. Jaime in:

  14. Search for F. Balakirev in:

  15. Search for D. A. Tennant in:

  16. Search for J. F. DiTusa in:

  17. Search for I. Chiorescu in:

  18. Search for L. Spinu in:

  19. Search for Z. Q. Mao in:

Contributions

J.Y.L., J.H. and Q.Z. equally contributed to this work. The single crystals used in this study were synthesized by J.Y.L. The magnetotransport measurements in 14 T PPMS were carried out by J.Y.L., D.J.A., Z.Q.M. and L.S. The high-field measurements at NHMFL were conducted by J.H., D.G., S.M.A.R., I.C., L.S. and Z.Q.M., G.F.C., X.L., J.W. and W.A.P. contributed to X-ray structure characterization and crystal quality examination. J.H., J.Y.L. and Y.L.Z. performed magnetization measurements. Q.Z., H.B.C., J.F.D. and D.A.T. conducted neutron scattering experiments and analyses. M.J. and F.B. did pulse magnetic field measurements. J.Y.L., J.H., Y.L.Z. and Z.Q.M. conducted transport data analyses. All authors contributed to scientific discussions and read and commented on the manuscript. This project was supervised by Z.Q.M.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Z. Q. Mao.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nmat4953

Further reading

Newsletter Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing