Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A magnetic topological semimetal Sr1−yMn1−zSb2 (y, z < 0.1)


Weyl (WSMs) evolve from Dirac semimetals in the presence of broken time-reversal symmetry (TRS) or space-inversion symmetry. The WSM phases in TaAs-class materials and photonic crystals are due to the loss of space-inversion symmetry. For TRS-breaking WSMs, despite numerous theoretical and experimental efforts, few examples have been reported. In this Article, we report a new type of magnetic semimetal Sr1−yMn1−zSb2 (y, z < 0.1) with nearly massless relativistic fermion behaviour (m = 0.04 − 0.05m0, where m0 is the free-electron mass). This material exhibits a ferromagnetic order for 304 K < T < 565 K, but a canted antiferromagnetic order with a ferromagnetic component for T < 304 K. The combination of relativistic fermion behaviour and ferromagnetism in Sr1−yMn1−zSb2 offers a rare opportunity to investigate the interplay between relativistic fermions and spontaneous TRS breaking.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Quantum oscillations in Sr1−yMn1−zSb2.
Figure 2: Non-trivial Berry phase of realistic fermions in Sr1−yMn1−zSb2.
Figure 3: Coupling between magnetism and quantum transport properties in Sr1−yMn1−zSb2.
Figure 4: Magnetism of Sr1−yMn1−zSb2.


  1. 1

    Wang, Z. et al. Dirac semimetal and topological phase transitions in A3Bi(A = Na, K, Rb). Phys. Rev. B 85, 195320 (2012).

    Article  Google Scholar 

  2. 2

    Liu, Z. K. et al. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi. Science 343, 864–867 (2014).

    CAS  Article  Google Scholar 

  3. 3

    Wang, Z., Weng, H., Wu, Q., Dai, X. & Fang, Z. Three-dimensional Dirac semimetal and quantum transport in Cd3As2 . Phys. Rev. B 88, 125427 (2013).

    Article  Google Scholar 

  4. 4

    Liu, Z. K. et al. A stable three-dimensional topological Dirac semimetal Cd3As2 . Nat. Mater. 13, 677–681 (2014).

    CAS  Article  Google Scholar 

  5. 5

    Neupane, M. et al. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2 . Nat. Commun. 5, 3786 (2014).

    CAS  Article  Google Scholar 

  6. 6

    Borisenko, S. et al. Experimental realization of a three-dimensional Dirac semimetal. Phys. Rev. Lett. 113, 027603 (2014).

    Article  Google Scholar 

  7. 7

    Liang, T. et al. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2 . Nat. Mater. 14, 280–284 (2015).

    CAS  Article  Google Scholar 

  8. 8

    Narayanan, A. et al. Linear magnetoresistance caused by mobility fluctuations in n-doped Cd3As2 . Phys. Rev. Lett. 114, 117201 (2015).

    CAS  Article  Google Scholar 

  9. 9

    Li, Q. et al. Chiral magnetic effect in ZrTe5 . Nat. Phys. 12, 550–554 (2016).

    Article  Google Scholar 

  10. 10

    Bian, G. et al. Topological nodal-line fermions in spin–orbit metal PbTaSe2 . Nat. Commun. 7, 10556 (2016).

    CAS  Article  Google Scholar 

  11. 11

    Wu, Y. et al. Dirac node arcs in PtSn4 . Nat. Phys. 12, 667–671 (2016).

    CAS  Article  Google Scholar 

  12. 12

    Schoop, L. M. et al. Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS. Nat. Commun. 7, 11696 (2016).

    CAS  Article  Google Scholar 

  13. 13

    Huang, S.-M. et al. A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class. Nat. Commun. 6, 7373 (2015).

    CAS  Article  Google Scholar 

  14. 14

    Weng, H., Fang, C., Fang, Z., Bernevig, B. A. & Dai, X. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys. Rev. X 5, 011029 (2015).

    Google Scholar 

  15. 15

    Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

    Article  Google Scholar 

  16. 16

    Nielsen, H. B. & Ninomiya, M. The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal. Phys. Lett. B 130, 389–396 (1983).

    Article  Google Scholar 

  17. 17

    Son, D. T. & Spivak, B. Z. Chiral anomaly and classical negative magnetoresistance of Weyl metals. Phys. Rev. B 88, 104412 (2013).

    Article  Google Scholar 

  18. 18

    Jho, Y.-S. & Kim, K.-S. Interplay between interaction and chiral anomaly: anisotropy in the electrical resistivity of interacting Weyl metals. Phys. Rev. B 87, 205133 (2013).

    Article  Google Scholar 

  19. 19

    Yang, L. X. et al. Weyl semimetal phase in the non-centrosymmetric compound TaAs. Nat. Phys. 11, 728–732 (2015).

    CAS  Article  Google Scholar 

  20. 20

    Xu, S.-Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015).

    CAS  Article  Google Scholar 

  21. 21

    Xu, N. et al. Observation of Weyl nodes and Fermi arcs in tantalum phosphide. Nat. Commun. 7, 11006 (2015).

    Article  Google Scholar 

  22. 22

    Lv, B. Q. et al. Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X 5, 031013 (2015).

    Google Scholar 

  23. 23

    Xu, S.-Y. et al. Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide. Nat. Phys. 11, 748–754 (2015).

    CAS  Article  Google Scholar 

  24. 24

    Lu, L. et al. Experimental observation of Weyl points. Science 349, 622–624 (2015).

    CAS  Article  Google Scholar 

  25. 25

    Borisenko, S. et al. Time-reversal symmetry breaking type-II Weyl state in YbMnBi2. Preprint at (2015).

  26. 26

    Park, J. et al. Anisotropic Dirac fermions in a Bi square net of SrMnBi2 . Phys. Rev. Lett. 107, 126402 (2011).

    Article  Google Scholar 

  27. 27

    Feng, Y. et al. Strong anisotropy of Dirac cones in SrMnBi2 and CaMnBi2 revealed by angle-resolved photoemission spectroscopy. Sci. Rep. 4, 05385 (2014).

    CAS  Article  Google Scholar 

  28. 28

    Masuda, H. et al. Quantum Hall effect in a bulk antiferromagnet EuMnBi2 with magnetically confined two-dimensional Dirac fermions. Sci. Adv. 2, e1501117 (2016).

    Article  Google Scholar 

  29. 29

    Farhan, M. A., Geunsik, L. & Ji Hoon, S. AEMnSb2 (AE = Sr, Ba): a new class of Dirac materials. J. Phys. Condens. Matter 26, 042201 (2014).

    Article  Google Scholar 

  30. 30

    Liu, J. et al. Nearly massless Dirac fermions hosted by Sb square net in BaMnSb2 . Sci. Rep. 6, 30525 (2016).

    CAS  Article  Google Scholar 

  31. 31

    Brechtel, E., Cordier, G. & Schäfer, H. Neue ternäre erdalkali-übergangselement-pnictide. J. Less-Common Met. 79, 131–138 (1981).

    CAS  Article  Google Scholar 

  32. 32

    Kartsovnik, M. V. High magnetic fields: a tool for studying electronic properties of layered organic metals. Chem. Rev. 104, 5737–5782 (2004).

    CAS  Article  Google Scholar 

  33. 33

    He, L. P. et al. Quantum transport evidence for the three-dimensional Dirac semimetal phase in Cd3As2 . Phys. Rev. Lett. 113, 246402 (2014).

    CAS  Article  Google Scholar 

  34. 34

    Zhao, Y. et al. Anisotropic Fermi surface and quantum limit transport in high mobility three-dimensional Dirac semimetal Cd3As2 . Phys. Rev. X 5, 031037 (2015).

    Google Scholar 

  35. 35

    Taskin, A. A. & Ando, Y. Berry phase of nonideal Dirac fermions in topological insulators. Phys. Rev. B 84, 035301 (2011).

    Article  Google Scholar 

  36. 36

    Xiong, J. et al. High-field Shubnikov–de Haas oscillations in the topological insulator Bi2Te2Se. Phys. Rev. B 86, 045314 (2012).

    Article  Google Scholar 

  37. 37

    Ando, Y. Topological insulator materials. J. Phys. Soc. Jpn 82, 102001 (2013).

    Article  Google Scholar 

  38. 38

    Guo, Y. F. et al. Coupling of magnetic order to planar Bi electrons in the anisotropic Dirac metals AMnBi2 (A = Sr, Ca). Phys. Rev. B 90, 075120 (2014).

    Article  Google Scholar 

  39. 39

    Wang, A. et al. Two-dimensional Dirac fermions in YbMnBi2 antiferromagnet. Phys. Rev. B 94, 165161 (2016).

    Article  Google Scholar 

  40. 40

    Liu, J. Y. et al. Unusual interlayer quantum transport behavior caused by the zeroth Landau level in YbMnBi2. Preprint at (2016).

  41. 41

    Huang, S., Kim, J., Shelton, W. A., Plummer, E. W. & Jin, R. Nontrivial Berry phase in magnetic BaMnSb2 semimetal. Proc. Natl Acad. Sci. USA 114, 6256–6261 (2017).

    CAS  Article  Google Scholar 

  42. 42

    Hu, J. et al. π Berry phase and Zeeman splitting of Weyl semimetal TaP. Sci. Rep. 6, 18674 (2016).

    CAS  Article  Google Scholar 

  43. 43

    Lifshitz, I. M. & Kosevich, A. M. Theory of magnetic susceptibility in metals at low temperatures. Sov. Phys. JETP 2, 636–645 (1956).

    Google Scholar 

  44. 44

    Shoenberg, D. Magnetic Oscillations in Metals (Cambridge Univ. Press, 1984).

    Book  Google Scholar 

  45. 45

    Mikitik, G. P. & Sharlai, Y. V. Manifestation of Berry’s phase in metal physics. Phys. Rev. Lett. 82, 2147–2150 (1999).

    CAS  Article  Google Scholar 

  46. 46

    Chakoumakos, B. C. et al. Four-circle single-crystal neutron diffractometer at the High Flux Isotope Reactor. J. Appl. Crystallogr. 44, 655–658 (2011).

    CAS  Article  Google Scholar 

  47. 47

    Wills, A. S. A new protocol for the determination of magnetic structures using simulated annealing and representational analysis (SARAh). Physica B 276–278, 680–681 (2000).

    Article  Google Scholar 

  48. 48

    Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192, 55–69 (1993).

    Article  Google Scholar 

Download references


The authors thank C. Wu at UCSD for helpful discussions. The work at Tulane University was supported by the NSF under Grant DMR-1205469 (support for personnel and materials) and Louisiana Board of Regents under grant LEQSF(2014-15)-ENH-TR-24 (support for equipment purchase). The neutron scattering work used resources at the High Flux Isotope Reactor, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory, and is supported by the US Department of Energy under EPSCoR Grant No. DE-SC0012432 with additional support from the Louisiana Board of Regents. The work at UNO is supported by the NSF under the NSF EPSCoR Cooperative Agreement No. EPS-1003897 with additional support from the Louisiana Board of Regents. The work at FSU and at the National High Magnetic Field Laboratory is supported by the NSF grant No. DMR-1206267, the NSF Cooperative Agreement No. DMR-1157490, and the State of Florida. Work at LANL was supported by the US DOE Basic Energy Science project ‘Science at 100 Tesla’. The authors also acknowledge support from grant DOE DE-NA0001979.

Author information




J.Y.L., J.H. and Q.Z. equally contributed to this work. The single crystals used in this study were synthesized by J.Y.L. The magnetotransport measurements in 14 T PPMS were carried out by J.Y.L., D.J.A., Z.Q.M. and L.S. The high-field measurements at NHMFL were conducted by J.H., D.G., S.M.A.R., I.C., L.S. and Z.Q.M., G.F.C., X.L., J.W. and W.A.P. contributed to X-ray structure characterization and crystal quality examination. J.H., J.Y.L. and Y.L.Z. performed magnetization measurements. Q.Z., H.B.C., J.F.D. and D.A.T. conducted neutron scattering experiments and analyses. M.J. and F.B. did pulse magnetic field measurements. J.Y.L., J.H., Y.L.Z. and Z.Q.M. conducted transport data analyses. All authors contributed to scientific discussions and read and commented on the manuscript. This project was supervised by Z.Q.M.

Corresponding author

Correspondence to Z. Q. Mao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1172 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Hu, J., Zhang, Q. et al. A magnetic topological semimetal Sr1−yMn1−zSb2 (y, z < 0.1). Nature Mater 16, 905–910 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing