Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Modulation of thermal and thermoelectric transport in individual carbon nanotubes by fullerene encapsulation

Abstract

The potential impact of encapsulated molecules on the thermal properties of individual carbon nanotubes (CNTs) has been an important open question since the first reports of the strong modulation of electrical properties in 20021,2. However, thermal property modulation has not been demonstrated experimentally because of the difficulty of realizing CNT-encapsulated molecules as part of thermal transport microstructures. Here we develop a nanofabrication strategy that enables measurement of the impact of encapsulation on the thermal conductivity (κ) and thermopower (S) of single CNT bundles that encapsulate C60, Gd@C82 and Er2@C82. Encapsulation causes 35–55% suppression in κ and approximately 40% enhancement in S compared with the properties of hollow CNTs at room temperature. Measurements of temperature dependence from 40 to 320 K demonstrate a shift of the peak in the κ to lower temperature. The data are consistent with simulations accounting for the interaction between CNTs and encapsulated fullerenes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematics, SEM and TEM images of measurement devices and encapsulated CNTs.
Figure 2: Thermal conductivity (κ) and thermoelectric power (S) of encapsulated CNT bundles measured at room temperature (T = 300 K).
Figure 3: Temperature dependence of the thermal conductivity (κ) and thermoelectric power (S) of encapsulated CNT bundles.
Figure 4: Simulations of SWNT samples with encapsulation.

Similar content being viewed by others

References

  1. Hornbaker, D. J. et al. Mapping the one-dimensional electronic states of nanotube peapod structures. Science 295, 828–831 (2002).

    Article  CAS  Google Scholar 

  2. Lee, J. et al. Bandgap modulation of carbon nanotubes by encapsulated metallofullerenes. Nature 415, 1005–1008 (2002).

    Article  CAS  Google Scholar 

  3. Avery, A. D. et al. Tailored semiconducting carbon nanotube networks with enhanced thermoelectric properties. Nat. Energy 1, 16033 (2016).

    Article  CAS  Google Scholar 

  4. Panzer, M. A. et al. Temperature-dependent phonon conduction and nanotube engagement in metalized single wall carbon nanotube films. Nano Lett. 10, 2395–2400 (2010).

    Article  CAS  Google Scholar 

  5. Smith, B. W., Monthioux, M. & Luzzi, D. E. Encapsulated C60 in carbon nanotubes. Nature 396, 323–324 (1998).

    Article  CAS  Google Scholar 

  6. Zhang, J. et al. Synthesis and transformation of linear adamantane assemblies inside carbon nanotubes. ACS Nano 6, 8674–8683 (2012).

    Article  CAS  Google Scholar 

  7. Kitaura, R., Imazu, N., Kobayashi, K. & Shinohara, H. Fabrication of metal nanowires in carbon nanotubes via versatile nano-template reaction. Nano Lett. 8, 693–699 (2008).

    Article  CAS  Google Scholar 

  8. Liu, X. et al. Design of covalently functionalized carbon nanotubes filled with metal oxide nanoparticles for imaging, therapy, and magnetic manipulation. ACS Nano 8, 11290–11304 (2014).

    Article  CAS  Google Scholar 

  9. Kim, P., Shi, L., Majumdar, A. & McEuen, P. L. Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 87, 215502 (2001).

    Article  CAS  Google Scholar 

  10. Yu, C., Shi, L., Yao, Z., Li, D. & Majumdar, A. Thermal conductance and thermopower of an individual single-wall carbon nanotube. Nano Lett. 5, 1842–1846 (2005).

    Article  CAS  Google Scholar 

  11. Shi, L. et al. Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device. J. Heat Transfer 125, 881–888 (2003).

    Article  CAS  Google Scholar 

  12. Pettes, M. T. & Shi, L. Thermal and structural characterizations of individual single-, double-, and multi-walled carbon nanotubes. Adv. Funct. Mater. 19, 3918–3925 (2009).

    Article  CAS  Google Scholar 

  13. Shimada, T. et al. Ambipolar field-effect transistor behavior of Gd@C82 metallofullerene peapods. Appl. Phys. Lett. 81, 4067–4069 (2002).

    Article  CAS  Google Scholar 

  14. Kratschmer, W., Lamb, L. D., Fostiropoulos, K. & Huffman, D. R. Solid C60: a new form of carbon. Nature 347, 354–358 (1990).

    Article  Google Scholar 

  15. Takata, M. et al. Confirmation by X-ray diffraction of the endohedral nature of the metallofullerene Y@C82 . Nature 377, 46–49 (1995).

    Article  CAS  Google Scholar 

  16. Pop, E., Mann, D., Wang, Q., Goodson, K. & Dai, H. Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 6, 96–100 (2006).

    Article  CAS  Google Scholar 

  17. Fujii, M. et al. Measuring the thermal conductivity of a single carbon nanotube. Phys. Rev. Lett. 95, 065502 (2005).

    Article  Google Scholar 

  18. Hone, J., Whitney, M., Piskoti, C. & Zettl, A. Thermal conductivity of single-walled carbon nanotubes. Phys. Rev. B 59, R2514–R2516 (1999).

    Article  CAS  Google Scholar 

  19. Hsu, I.-K. et al. Optical absorption and thermal transport of individual suspended carbon nanotube bundles. Nano Lett. 9, 590–594 (2009).

    Article  CAS  Google Scholar 

  20. Aliev, A. E. et al. Thermal conductivity of multi-walled carbon nanotube sheets: radiation losses and quenching of phonon modes. Nanotechnology 21, 035709 (2010).

    Article  Google Scholar 

  21. Ong, Z.-Y., Pop, E. & Shiomi, J. Reduction of phonon lifetimes and thermal conductivity of a carbon nanotube on amorphous silica. Phys. Rev. B 84, 165418 (2011).

    Article  Google Scholar 

  22. Vavro, J., Llaguno, M. C., Satishkumar, B. C., Luzzi, D. E. & Fischer, J. E. Electrical and thermal properties of C60-filled single-wall carbon nanotubes. Appl. Phys. Lett. 80, 1450–1452 (2002).

    Article  CAS  Google Scholar 

  23. Noya, E. G., Srivastava, D., Chernozatonskii, L. A. & Menon, M. Thermal conductivity of carbon nanotube peapods. Phys. Rev. B 70, 115416 (2004).

    Article  Google Scholar 

  24. Kawamura, T., Kangawa, Y. & Kakimoto, K. Investigation of the thermal conductivity of a fullerene peapod by molecular dynamics simulation. J. Cryst. Growth 310, 2301–2305 (2008).

    Article  CAS  Google Scholar 

  25. Cui, L., Feng, Y. & Zhang, X. Dependence of thermal conductivity of carbon nanopeapods on filling ratios of fullerene molecules. J. Phys. Chem. A 119, 11226–11232 (2015).

    Article  CAS  Google Scholar 

  26. Ohno, Y. et al. Synthesis of carbon nanotube peapods directly on Si substrates. Appl. Phys. Lett. 86, 023109 (2005).

    Article  Google Scholar 

  27. Okada, S., Saito, S. & Oshiyama, A. Energetics and electronic structures of encapsulated C60 in a carbon nanotube. Phys. Rev. Lett. 86, 3835–3838 (2001).

    Article  CAS  Google Scholar 

  28. Okazaki, T. et al. Optical band gap modification of single-walled carbon nanotubes by encapsulated fullerenes. J. Am. Chem. Soc. 130, 4122–4128 (2008).

    Article  CAS  Google Scholar 

  29. Ashino, M. et al. Atomically resolved mechanical response of individual metallofullerene molecules confined inside carbon nanotubes. Nat. Nanotech. 3, 337–341 (2008).

    Article  CAS  Google Scholar 

  30. He, X. et al. Wafer-scale monodomain films of spontaneously aligned single-walled carbon nanotubes. Nat. Nanotech. 11, 633–638 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Barako for advice on writing the manuscript; M. Asheghi, J. Cho, J. Li, A. Marconnet, S. Roy and A. Sood for discussions on thermal and thermoelectric measurements; and H. Ishiwata for support on Raman spectroscopic measurement. The experimental part of this work was financially supported by the Air Force Office of Scientific Research (AFOSR, no. FA9550-12-1-0195), the National Science Foundation (NSF, no. 1336734), and JSPS KAKENHI (no. JP16H06722). The theory part was financially supported by JST-CREST (no. JPMJCR16Q5) and JSPS KAKENHI (no. JP16H04274).

Author information

Authors and Affiliations

Authors

Contributions

T.K. led the project and contributed to the experimental works including device design, fabrication, and conduction measurement. M.O., T.Shiga and J.S. contributed to the theoretical work. W.P. contributed to the SEM imaging and conduction measurement. J.P. contributed to the TEM imaging. T.Shimada and H.S. synthesized and provided all of the CNT samples used in the project. K.E.G. served both as PI and primary advisor for the thermal and thermoelectric measurements. T.K., M.O., T.Shiga, J.S. and K.E.G. wrote the paper.

Corresponding authors

Correspondence to Takashi Kodama or Kenneth E. Goodson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 9726 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kodama, T., Ohnishi, M., Park, W. et al. Modulation of thermal and thermoelectric transport in individual carbon nanotubes by fullerene encapsulation. Nature Mater 16, 892–897 (2017). https://doi.org/10.1038/nmat4946

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4946

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing