Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Formation of porous crystals via viscoelastic phase separation

Abstract

Viscoelastic phase separation of colloidal suspensions can be interrupted to form gels either by glass transition or by crystallization. With a new confocal microscopy protocol, we follow the entire kinetics of phase separation, from homogeneous phase to different arrested states. For the first time in experiments, our results unveil a novel crystallization pathway to sponge-like porous crystal structures. In the early stages, we show that nucleation requires a structural reorganization of the liquid phase, called stress-driven ageing. Once nucleation starts, we observe that crystallization follows three different routes: direct crystallization of the liquid phase, the Bergeron process, and Ostwald ripening. Nucleation starts inside the reorganized network, but crystals grow past it by direct condensation of the gas phase on their surface, driving liquid evaporation, and producing a network structure different from the original phase separation pattern. We argue that similar crystal-gel states can be formed in monatomic and molecular systems if the liquid phase is slow enough to induce viscoelastic phase separation, but fast enough to prevent immediate vitrification. This provides a novel pathway to form nanoporous crystals of metals and semiconductors without dealloying, which may be important for catalytic, optical, sensing, and filtration applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phase behaviour.
Figure 2: Percolated network structures.
Figure 3: Structural evolution at late times.
Figure 4: Stress-driven ageing.
Figure 5: Characterization of the crystal gel.
Figure 6: Crystal-gel formation.

Similar content being viewed by others

References

  1. Glickman, T. S. & Zenk, W. Glossary of Meteorology (American Meteorological Society, 2000).

    Google Scholar 

  2. Morrison, H. et al. Resilience of persistent arctic mixed-phase clouds. Nat. Geosci. 5, 11–17 (2012).

    CAS  Google Scholar 

  3. ten Wolde, P. R. & Frenkel, D. Enhancement of protein crystal nucleation by critical density fluctuations. Science 277, 1975–1978 (1997).

    CAS  Google Scholar 

  4. Sear, R. Nucleation: theory and applications to protein solutions and colloidal suspensions. J. Phys. Condens. Matter 19, 033101 (2007).

    Google Scholar 

  5. Savage, J. R. & Dinsmore, A. D. Experimental evidence for two-step nucleation in colloidal crystallization. Phys. Rev. Lett. 102, 198302 (2009).

    CAS  Google Scholar 

  6. Vekilov, P. G. The two-step mechanism of nucleation of crystals in solution. Nanoscale 2, 2346–2357 (2010).

    CAS  Google Scholar 

  7. Palberg, T. Crystallization kinetics of colloidal model suspensions: recent achievements and new perspectives. J. Phys. Condens. Matter 26, 333101 (2014).

    Google Scholar 

  8. Anderson, V. J. & Lekkerkerker, H. N. W. Insights into phase transition kinetics from colloid science. Nature 416, 811–815 (2002).

    CAS  Google Scholar 

  9. Lekkerkerker, H. N. W. & Tuinier, R. Colloids and the Depletion Interaction Vol. 833 (Springer Science Business Media, 2011).

    Google Scholar 

  10. Poon, W. C. K. The physics of a model colloid–polymer mixture. J. Phys. Condens. Matter 14, R859–R880 (2002).

    CAS  Google Scholar 

  11. Zaccarelli, E. Colloidal gels: equilibrium and non-equilibrium routes. J. Phys. Condens. Matter 19, 323101 (2007).

    Google Scholar 

  12. Piazza, R. & Di Pietro, G. Phase separation and gel-like structures in mixtures of colloids and surfactant. Europhys. Lett. 28, 445–450 (1994).

    CAS  Google Scholar 

  13. Verhaegh, N. A. M., Asnaghi, D., Lekkerkerker, H. N. W., Giglio, M. & Cipelletti, L. Transient gelation by spinodal decomposition in colloid–polymer mixtures. Physica A 242, 104–118 (1997).

    CAS  Google Scholar 

  14. Lu, P. J. et al. Gelation of particles with short-range attraction. Nature 453, 499–503 (2008).

    CAS  Google Scholar 

  15. Tanaka, H. Viscoelastic model of phase separation in colloidal suspensions and emulsions. Phys. Rev. E 59, 6842–6852 (1999).

    CAS  Google Scholar 

  16. Tanaka, H. Viscoelastic phase separation. J. Phys. Condens. Matter 12, R207–R264 (2000).

    CAS  Google Scholar 

  17. Krall, A. H. & Weitz, D. A. Internal dynamics and elasticity of fractal colloidal gels. Phys. Rev. Lett. 80, 778–781 (1998).

    CAS  Google Scholar 

  18. Solomon, M. J. & Varadan, P. Dynamic structure of thermoreversible colloidal gels of adhesive spheres. Phys. Rev. E 63, 051402 (2001).

    CAS  Google Scholar 

  19. Romer, S., Scheffold, F. & Schurtenberger, P. Sol–gel transition of concentrated colloidal suspensions. Phys. Rev. Lett. 85, 4980–4983 (2000).

    CAS  Google Scholar 

  20. Pusey, P. N., Pirie, A. D. & Poon, W. C. K. Dynamics of colloid–polymer mixtures. Physica A 201, 322–331 (1993).

    CAS  Google Scholar 

  21. Ilett, S. M., Orrock, A., Poon, W. C. K. & Pusey, P. N. Phase behavior of a model colloid–polymer mixture. Phys. Rev. E 51, 1344–1352 (1995).

    CAS  Google Scholar 

  22. Foffi, G. et al. Phase equilibria and glass transition in colloidal systems with short-ranged attractive interactions: application to protein crystallization. Phys. Rev. E 65, 031407 (2002).

    Google Scholar 

  23. Buzzaccaro, S., Rusconi, R. & Piazza, R. Sticky hard spheres: equation of state, phase diagram, and metastable gels. Phys. Rev. Lett. 99, 098301 (2007).

    Google Scholar 

  24. Testard, V., Berthier, L. & Kob, W. Influence of the glass transition on the liquid–gas spinodal decomposition. Phys. Rev. Lett. 106, 125702 (2011).

    Google Scholar 

  25. Royall, C. P., Williams, S. R., Ohtsuka, T. & Tanaka, H. Direct observation of a local structural mechanism for dynamic arrest. Nat. Mater. 7, 556–561 (2008).

    CAS  Google Scholar 

  26. Poon, W. C. K. et al. Colloid–polymer mixtures at triple coexistence: kinetic maps from free-energy landscapes.. Phys. Rev. Lett. 83, 1239–1242 (1999).

    CAS  Google Scholar 

  27. Tanaka, H. & Nishi, T. New types of phase separation behavior during the crystallization process in polymer blends with phase diagram. Phys. Rev. Lett. 55, 1102–1105 (1985).

    CAS  Google Scholar 

  28. Soga, K. G., Melrose, J. R. & Ball, R. C. Metastable states and the kinetics of colloid phase separation. J. Chem. Phys. 110, 2280–2288 (1999).

    CAS  Google Scholar 

  29. Charbonneau, P. & Reichman, D. Systematic characterization of thermodynamic and dynamical phase behavior in systems with short-ranged attraction. Phys. Rev. E 75, 011507 (2007).

    CAS  Google Scholar 

  30. Fortini, A., Sanz, E. & Dijkstra, M. Crystallization and gelation in colloidal systems with short-ranged attractive interactions. Phys. Rev. E 78, 041402 (2008).

    Google Scholar 

  31. Pérez, T., Liu, Y., Li, W., Gunton, J. D. & Chakrabarti, A. Pathways of cluster growth and kinetic slowing down in a model of short-range attractive colloids. Langmuir 27, 11401–11408 (2011).

    Google Scholar 

  32. Sabin, J., Bailey, A. E., Espinosa, G. & Frisken, B. J. Crystal-arrested phase separation. Phys. Rev. Lett. 109, 195701 (2012).

    Google Scholar 

  33. Zhang, T. H., Klok, J., Tromp, R. H., Groenewold, J. & Kegel, W. K. Non-equilibrium cluster states in colloids with competing interactions. Soft Matter 8, 667–672 (2012).

    CAS  Google Scholar 

  34. Sanz, E., Leunissen, M. E., Fortini, A., Van Blaaderen, A. & Dijkstra, M. Gel formation in suspensions of oppositely charged colloids: mechanism and relation to the equilibrium phase diagram. J. Phys. Chem. B 112, 10861–10872 (2008).

    CAS  Google Scholar 

  35. Sanz, E. et al. Out-of-equilibrium processes in suspensions of oppositely charged colloids: liquid-to-crystal nucleation and gel formation. J. Phys. Condens. Matter 20, 494247 (2008).

    Google Scholar 

  36. Pham, K. N. et al. Multiple glassy states in a simple model system. Science 296, 104–106 (2002).

    CAS  Google Scholar 

  37. Olmsted, P. D., Poon, W. C. K., McLeish, T. C. B., Terrill, N. J. & Ryan, A. J. Spinodal-assisted crystallization in polymer melts. Phys. Rev. Lett. 81, 373–376 (1998).

    CAS  Google Scholar 

  38. Tanaka, H. & Araki, T. Simulation method of colloidal suspensions with hydrodynamic interactions: fluid particle dynamics. Phys. Rev. Lett. 85, 1338–1341 (2000).

    CAS  Google Scholar 

  39. Tanaka, H. & Araki, T. Spontaneous coarsening of a colloidal network driven by self-generated mechanical stress. Europhys. Lett. 79, 58003 (2007).

    Google Scholar 

  40. Furukawa, A. & Tanaka, H. Key role of hydrodynamic interactions in colloidal gelation. Phys. Rev. Lett. 104, 245702 (2010).

    Google Scholar 

  41. Cipelletti, L. et al. Universal non-diffusive slow dynamics in aging soft matter. Faraday Discuss. 123, 237–251 (2003).

    CAS  Google Scholar 

  42. Lodge, J. F. M. & Heyes, D. M. Brownian dynamics simulations of Lennard-Jones gas/liquid phase separation and its relevance to gel formation. J. Chem. Soc. Faraday Trans. 93, 437–448 (1997).

    Google Scholar 

  43. Onuki, A. Phase Transition Dynamics (Cambridge Univ. Press, 2002).

    Google Scholar 

  44. Ding, Y., Kim, Y.-J. & Erlebacher, J. Nanoporous gold leaf: ancient technology/advanced material. Adv. Mater. 16, 1897–1900 (2004).

    CAS  Google Scholar 

  45. Ding, Y. & Chen, M. Nanoporous metals for catalytic and optical applications. MRS Bull. 34, 569–576 (2009).

    CAS  Google Scholar 

  46. Wittstock, A., Zielasek, V., Biener, J., Friend, C. M. & Bäumer, M. Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature. Science 327, 319–322 (2010).

    CAS  Google Scholar 

  47. Fujita, T. et al. Atomic origins of the high catalytic activity of nanoporous gold. Nat. Mater. 11, 775–780 (2012).

    CAS  Google Scholar 

  48. Erlebacher, J., Aziz, M. J., Karma, A., Dimitrov, N. & Sieradzki, K. Evolution of nanoporosity in dealloying. Nature 410, 450–453 (2001).

    CAS  Google Scholar 

  49. Povarnitsyn, M. E., Itina, T. E., Levashov, P. R. & Khishchenko, K. V. Mechanisms of nanoparticle formation by ultra-short laser ablation of metals in liquid environment. Phys. Chem. Chem. Phys. 15, 3108–3114 (2013).

    CAS  Google Scholar 

  50. Philpotts, A. R., Shi, J. & Brustman, C. Role of plagioclase crystal chains in the differentiation of partly crystallized basaltic magma. Nature 395, 343–346 (1998).

    CAS  Google Scholar 

  51. Rousseau, M. et al. Multiscale structure of sheet nacre. Biomaterials 26, 6254–6262 (2005).

    CAS  Google Scholar 

  52. Deman, J. M. & Beers, A. M. Fat crystal networks: structure and rheological properties. J. Texture Stud. 18, 303–318 (1987).

    Google Scholar 

  53. Klein, S. M., Manoharan, V. N., Pine, D. J. & Lange, F. F. Preparation of monodisperse PMMA microspheres in nonpolar solvents by dispersion polymerization with a macromonomeric stabilizer. Colloid Polym. Sci. 282, 7–13 (2003).

    CAS  Google Scholar 

  54. Bosma, G. et al. Preparation of monodisperse, fluorescent PMMA-latex colloids by dispersion polymerization. J. Colloid Interface Sci. 245, 292–300 (2002).

    CAS  Google Scholar 

  55. Leocmach, M. & Tanaka, H. A novel particle tracking method with individual particle size measurement and its application to ordering in glassy hard sphere colloids. Soft Matter 9, 1447–1457 (2013).

    CAS  Google Scholar 

  56. Royall, C. P., Louis, A. A. & Tanaka, H. Measuring colloidal interactions with confocal microscopy. J. Chem. Phys. 127, 044507 (2007).

    Google Scholar 

  57. Poon, W. C. K., Weeks, E. R. & Royall, C. P. On measuring colloidal volume fractions. Soft Matter 8, 21–30 (2012).

    CAS  Google Scholar 

  58. Fleer, G. J. & Tuinier, R. Analytical phase diagrams for colloids and non-adsorbing polymer. Adv. Colloid Interface Sci. 143, 1–47 (2008).

    CAS  Google Scholar 

  59. Russo, J., Maggs, A. C., Bonn, D. & Tanaka, H. The interplay of sedimentation and crystallization in hard-sphere suspensions. Soft Matter 9, 7369–7383 (2013).

    CAS  Google Scholar 

Download references

Acknowledgements

This study was partly supported by Grants-in-Aid for Scientific Research (S) (Grand No. 21224011) and Specially Promoted Research (Grand No. 25000002) from the Japan Society for the Promotion of Science (JSPS). Collaboration between M.L. and H.Tanaka has been funded by CNRS through Projet international de coopération scientifique no. 7464.

Author information

Authors and Affiliations

Authors

Contributions

H.Tsurusawa and J.R. contributed equally to this work. H.Tanaka conceived and supervised the project, H.Tsurusawa performed experiments, J.R. analysed the data, M.L. linked experiments and analysis, and all the authors discussed and wrote the manuscript.

Corresponding author

Correspondence to Hajime Tanaka.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 669 kb)

Supplementary Movie 1

Supplementary Movie 1 (MOV 15559 kb)

Supplementary Movie 2

Supplementary Movie 2 (MOV 17840 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsurusawa, H., Russo, J., Leocmach, M. et al. Formation of porous crystals via viscoelastic phase separation. Nature Mater 16, 1022–1028 (2017). https://doi.org/10.1038/nmat4945

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4945

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing