Abstract

The synthesis of nanostructured zeolites enables modification of catalytically relevant properties such as effective surface area and diffusion path length. Nanostructured zeolites may be synthesized either in alkaline media, and so contain significant numbers of hydrophilic silanol groups, or in expensive and harmful fluoride-containing media. Here, we report and characterize, using a combination of experimental and theoretical techniques, the one-pot synthesis of silanol-free nanosized MFI-type zeolites by introducing atomically dispersed tungsten; this prevents silanol group occurrence by forming flexible W–O–Si bridges. These W–O–Si bonds are more stable than Si–O–Si in the all-silica MFI zeolite. Tungsten incorporation in nanosized MFI crystals also modifies other properties such as structural features, hydrophobicity and Lewis acidity. The effect of these is illustrated on the catalytic epoxidation of styrene and separation of CO2 and NO2. Silanol-free nanosized W-MFI zeolites open new perspectives for catalytic and separation applications.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & Inorganic molecular sieves: preparation, modification and industrial application in catalytic processes. Coord. Chem. Rev. 255, 1558–1580 (2011).

  2. 2.

    , & Nanosized microporous crystals: emerging applications. Chem. Soc. Rev. 44, 7207–7233 (2015).

  3. 3.

    , & Influence of synthesis conditions and postsynthesis treatments on the nature and quantity of structural defects in highly siliceous MFI zeolites: a high-resolution solid-state 29Si N.M.R. study. Zeolites 11, 598–606 (1991).

  4. 4.

    , & New route to pentasil-type zeolites using a non alkaline medium in the presence of fluoride ions. Stud. Surf. Sci. Catal. 28, 121–128 (1986).

  5. 5.

    & Nanozeolites: new strategies for designing ultra small silicalite crystals with very few framework defects. Micropor. Mesopor. Mater. 174, 90–99 (2013).

  6. 6.

    et al. Comparative study of nano-ZSM-5 catalysts synthesized in OH and F media. Adv. Funct. Mater. 24, 257–264 (2014).

  7. 7.

    , , & Zeolite synthesis in fluoride media: structure direction toward ITW by small methylimidazolium cations. J. Am. Chem. Soc. 134, 2255–2263 (2012).

  8. 8.

    Direct synthesis of functional zeolitic materials. ISRN Mater. Sci. 2012, 789525 (2012).

  9. 9.

    & in Liquid Phase Oxidation via Heterogeneous Catalysis (eds Clerici, M. G. & Kholdeeva, O. A.) Chapter 2 (John Wiley, 2013).

  10. 10.

    , & Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides. US patent 4,410,501 A (1983).

  11. 11.

    , , & Synthesis, structural characterization, and catalytic properties of tungsten-exchanged H-ZSM5. J. Phys. Chem. B 105, 3928–3936 (2001).

  12. 12.

    , , & Method for the preparation of defect-free nanosized synthetic zeolite materials. WO patent 2,017,068,387 A1 (2017).

  13. 13.

    et al. Influence of the coordination on the catalytic properties of supported W catalysts. J. Catal. 226, 25–31 (2004).

  14. 14.

    et al. Fourier-transform infrared and Raman spectra of pure and Al-, B-, Ti- and Fe-substituted silicalites: stretching-mode region. J. Chem. Soc. Faraday Trans. 89, 4123–4130 (1993).

  15. 15.

    & A new zincosilicate zeolite with nine-ring channels. Angew. Chem. Int. Ed. Engl. 34, 63–65 (1995).

  16. 16.

    & Synthesis and characterization of defect-free crystals of MFI-type zeolites. Appl. Catal. A 81, 27–34 (1992).

  17. 17.

    & High Resolution Solid State NMR of Silicates and Zeolites (Wiley, 1987).

  18. 18.

    & 29Si MAS NMR spectroscopy of tectozincosilicates. J. Phys. Chem. 98, 13151–13156 (1994).

  19. 19.

    , , , & Structure–deactivation relationship for ZSM-5 catalysts governed by framework defects. J. Catal. 280, 196–205 (2011).

  20. 20.

    , , & Structural analysis of silica-supported tungstates. J. Phys. Chem. B 102, 2759–2766 (1998).

  21. 21.

    & The FT-IR spectra of pyridine and pyridine-d5. J. Mol. Spectrosc. 104, 129–151 (1984).

  22. 22.

    et al. Potential and challenges of zeolite chemistry in the catalytic conversion of biomass. Biomass. Chem. Soc. Rev. 45, 584–611 (2016).

  23. 23.

    et al. Stability of zeolites in hot liquid water. J. Phys. Chem. C 114, 19582–19595 (2010).

  24. 24.

    , , , & Factors that determine zeolite stability in hot liquid water. J. Am. Chem. Soc. 137, 11810–11819 (2015).

  25. 25.

    et al. Improving stability of zeolites in aqueous phase via selective removal of structural defects. J. Am. Chem. Soc. 138, 4408–4415 (2016).

  26. 26.

    et al. Gaussian 09 (Gaussian, 2009).

  27. 27.

    , , , & Energy-adjusted ab initio pseudopotentials for the second and third row transition elements. Theor. Chim. Acta 77, 123–141 (1990).

  28. 28.

    , & Quantum mechanical continuum solvation models. Chem. Rev. 105, 2999–3094 (2005).

  29. 29.

    & Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. J. Phys. Rev. B 49, 14251–14270 (1994).

  30. 30.

    & Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

  31. 31.

    & Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244–13250 (1992).

  32. 32.

    Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7896 (1990).

  33. 33.

    & Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. J. Phys. Condens. Matter 6, 8245–8257 (1994).

  34. 34.

    , , & Brønsted acid sites in HSAPO-34 and chabazite: an ab initio structural study. J. Phys. Chem. B 102, 5573–5580 (1998).

  35. 35.

    & Database of Zeolite Structures;

Download references

Acknowledgements

The financial support from the Region of Lower Normandy is acknowledged. The computational work was supported by the Material Networking project (GA 692146).

Author information

Author notes

    • Julien Grand
    •  & Siddulu Naidu Talapaneni

    These authors contributed equally to this work.

Affiliations

  1. Laboratoire Catalyse et Spectrochimie (LCS) Normandie Univ, ENSICAEN, UNICAEN, CNRS, 14000 Caen, France

    • Julien Grand
    • , Siddulu Naidu Talapaneni
    • , Aurélie Vicente
    • , Christian Fernandez
    • , Eddy Dib
    • , Jean-Pierre Gilson
    • , Valentin Valtchev
    •  & Svetlana Mintova
  2. Faculty of Chemistry and Pharmacy, University of Sofia, 1126 Sofia, Bulgaria

    • Hristiyan A. Aleksandrov
    •  & Georgi N. Vayssilov
  3. Laboratoire de Cristallographie et Sciences des Matériaux (CRISMAT) Normandie Univ, ENSICAEN, UNICAEN, CNRS, 14000 Caen, France

    • Richard Retoux
    •  & Philippe Boullay

Authors

  1. Search for Julien Grand in:

  2. Search for Siddulu Naidu Talapaneni in:

  3. Search for Aurélie Vicente in:

  4. Search for Christian Fernandez in:

  5. Search for Eddy Dib in:

  6. Search for Hristiyan A. Aleksandrov in:

  7. Search for Georgi N. Vayssilov in:

  8. Search for Richard Retoux in:

  9. Search for Philippe Boullay in:

  10. Search for Jean-Pierre Gilson in:

  11. Search for Valentin Valtchev in:

  12. Search for Svetlana Mintova in:

Contributions

All authors contributed extensively to the work presented in this paper. J.G., S.N.T. and S.M. designed and performed experiments. A.V., C.F. and E.D. performed the NMR study (29Si, 1H, 23Na NMR). H.A.A. and G.N.V. carried out the theoretical calculations. R.R. performed the HRTEM and P.B. the XRD and Rietveld refinement. S.M., J.G., V.V. and J.-P.G. analysed output data, wrote the manuscript and financed the project.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Svetlana Mintova.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nmat4941

Further reading

Newsletter Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing