Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Electrical pumping and tuning of exciton-polaritons in carbon nanotube microcavities

Abstract

Exciton-polaritons are hybrid light–matter particles that form upon strong coupling of an excitonic transition to a cavity mode. As bosons, polaritons can form condensates with coherent laser-like emission. For organic materials, optically pumped condensation was achieved at room temperature but electrically pumped condensation remains elusive due to insufficient polariton densities. Here we combine the outstanding optical and electronic properties of purified, solution-processed semiconducting (6,5) single-walled carbon nanotubes (SWCNTs) in a microcavity-integrated light-emitting field-effect transistor to realize efficient electrical pumping of exciton-polaritons at room temperature with high current densities (>10 kA cm−2) and tunability in the near-infrared (1,060 nm to 1,530 nm). We demonstrate thermalization of SWCNT polaritons, exciton-polariton pumping rates 104 times higher than in current organic polariton devices, direct control over the coupling strength (Rabi splitting) via the applied gate voltage, and a tenfold enhancement of polaritonic over excitonic emission. This powerful material–device combination paves the way to carbon-based polariton emitters and possibly lasers.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Single-walled carbon nanotube-based light-emitting field-effect transistors.
Figure 2: Exciton-polaritons in light-emitting field-effect transistors.
Figure 3: Tunable electrically pumped exciton-polaritons.
Figure 4: Enhanced relaxation and polaritons at high current densities.
Figure 5: Reversible tuning between strong and weak coupling in LEFETs.

References

  1. 1

    Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).

    CAS  Article  Google Scholar 

  2. 2

    Amo, A. et al. Superfluidity of polaritons in semiconductor microcavities. Nat. Phys. 5, 805–810 (2009).

    CAS  Article  Google Scholar 

  3. 3

    Sanvitto, D. & Kéna-Cohen, S. The road towards polaritonic devices. Nat. Mater. 15, 1061–1073 (2016).

    CAS  Article  Google Scholar 

  4. 4

    Dreismann, A. et al. A sub-femtojoule electrical spin-switch based on optically trapped polariton condensates. Nat. Mater. 15, 1074–1078 (2016).

    CAS  Article  Google Scholar 

  5. 5

    Schneider, C. et al. An electrically pumped polariton laser. Nature 497, 348–352 (2013).

    CAS  Article  Google Scholar 

  6. 6

    Bhattacharya, P. et al. Room temperature electrically injected polariton laser. Phys. Rev. Lett. 112, 236802 (2014).

    Article  Google Scholar 

  7. 7

    Kéna-Cohen, S. & Forrest, S. R. Room-temperature polariton lasing in an organic single-crystal microcavity. Nat. Photon. 4, 371–375 (2010).

    Article  Google Scholar 

  8. 8

    Plumhof, J. D., Stöferle, T., Mai, L., Scherf, U. & Mahrt, R. F. Room-temperature Bose–Einstein condensation of cavity exciton–polaritons in a polymer. Nat. Mater. 13, 247–252 (2014).

    CAS  Article  Google Scholar 

  9. 9

    Daskalakis, K. S., Maier, S. A., Murray, R. & Kéna-Cohen, S. Nonlinear interactions in an organic polariton condensate. Nat. Mater. 13, 271–278 (2014).

    CAS  Article  Google Scholar 

  10. 10

    Dietrich, C. P. et al. An exciton-polariton laser based on biologically produced fluorescent protein. Sci. Adv. 2, e1600666 (2016).

    Article  Google Scholar 

  11. 11

    Gubbin, C. R., Maier, S. A. & Kéna-Cohen, S. Low-voltage polariton electroluminescence from an ultrastrongly coupled organic light-emitting diode. Appl. Phys. Lett. 104, 233302 (2014).

    Article  Google Scholar 

  12. 12

    Christogiannis, N. et al. Characterizing the electroluminescence emission from a strongly coupled organic semiconductor microcavity LED. Adv. Opt. Mater. 1, 503–509 (2013).

    Article  Google Scholar 

  13. 13

    Bisri, S. Z., Takenobu, T. & Iwasa, Y. The pursuit of electrically-driven organic semiconductor lasers. J. Mater. Chem. C 2, 2827–2836 (2014).

    CAS  Article  Google Scholar 

  14. 14

    Tsotsis, P. et al. Tuning the energy of a polariton condensate via bias-controlled Rabi splitting. Phys. Rev. Appl. 2, 014002 (2014).

    Article  Google Scholar 

  15. 15

    Tsintzos, S. I., Pelekanos, N. T., Konstantinidis, G., Hatzopoulos, Z. & Savvidis, P. G. A GaAs polariton light-emitting diode operating near room temperature. Nature 453, 372–375 (2008).

    CAS  Article  Google Scholar 

  16. 16

    Shiny condensates. Nat. Mater. 15, 1047 (2016).

  17. 17

    Fraser, M. D., Höfling, S. & Yamamoto, Y. Physics and applications of exciton–polariton lasers. Nat. Mater. 15, 1049–1052 (2016).

    CAS  Article  Google Scholar 

  18. 18

    Graf, A., Tropf, L., Zakharko, Y., Zaumseil, J. & Gather, M. C. Near-infrared exciton-polaritons in strongly coupled single-walled carbon nanotube microcavities. Nat. Commun. 7, 13078 (2016).

    CAS  Article  Google Scholar 

  19. 19

    Schießl, S. P. et al. Polymer-sorted semiconducting carbon nanotube networks for high-performance ambipolar field-effect transistors. ACS Appl. Mater. Interfaces 7, 682–689 (2015).

    Article  Google Scholar 

  20. 20

    Khasminskaya, S. et al. Fully integrated quantum photonic circuit with an electrically driven light source. Nat. Photon. 10, 727–732 (2016).

    CAS  Article  Google Scholar 

  21. 21

    Soavi, G., Scotognella, F., Lanzani, G. & Cerullo, G. Ultrafast photophysics of single-walled carbon nanotubes. Adv. Opt. Mater. 11, 1670–1688 (2016).

    Article  Google Scholar 

  22. 22

    Nguyen, D. T. et al. Elastic exciton-exciton scattering in photoexcited carbon nanotubes. Phys. Rev. Lett. 107, 127401 (2011).

    CAS  Article  Google Scholar 

  23. 23

    Iwamura, M. et al. Nonlinear photoluminescence spectroscopy of carbon nanotubes with localized exciton states. ACS Nano 8, 11254–11260 (2014).

    CAS  Article  Google Scholar 

  24. 24

    Graf, A. et al. Large scale, selective dispersion of long single-walled carbon nanotubes with high photoluminescence quantum yield by shear force mixing. Carbon 105, 593–599 (2016).

    CAS  Article  Google Scholar 

  25. 25

    Blackburn, J. L., Holt, J. M., Irurzun, V. M., Resasco, D. E. & Rumbles, G. Confirmation of K-momentum dark exciton vibronic sidebands using 13 C-labeled, highly enriched (6,5) single-walled carbon nanotubes. Nano Lett. 12, 1398–1403 (2012).

    CAS  Article  Google Scholar 

  26. 26

    Orgiu, E. et al. Conductivity in organic semiconductors hybridized with the vacuum field. Nat. Mater. 14, 1123–1129 (2015).

    CAS  Article  Google Scholar 

  27. 27

    Gwinner, M. C. et al. Highly efficient single-layer polymer ambipolar light-emitting field-effect transistors. Adv. Mater. 24, 2728–2734 (2012).

    CAS  Article  Google Scholar 

  28. 28

    Grant, R. T. et al. Efficient radiative pumping of polaritons in a strongly coupled microcavity by a fluorescent molecular dye. Adv. Opt. Mater. 4, 1615–1623 (2016).

    CAS  Article  Google Scholar 

  29. 29

    Ballarini, D. et al. Polariton-induced enhanced emission from an organic dye under the strong coupling regime. Adv. Opt. Mater. 2, 1076–1081 (2014).

    CAS  Article  Google Scholar 

  30. 30

    Coles, D. M. et al. Vibrationally assisted polariton-relaxation processes in strongly coupled organic-semiconductor microcavities. Adv. Funct. Mater. 21, 3691–3696 (2011).

    CAS  Article  Google Scholar 

  31. 31

    Somaschi, N. et al. Phonon-driven resonantly enhanced polariton luminescence in organic microcavities. Proc. SPIE 8260, 82600Q (2012).

    Article  Google Scholar 

  32. 32

    Lagoudakis, P. G. et al. Electron-polariton scattering in semiconductor microcavities. Phys. Rev. Lett. 90, 206401 (2003).

    CAS  Article  Google Scholar 

  33. 33

    Rother, M., Schießl, S. P., Zakharko, Y., Gannott, F. & Zaumseil, J. Understanding charge transport in mixed networks of semiconducting carbon nanotubes. ACS Appl. Mater. Interfaces 8, 5571–5579 (2016).

    CAS  Article  Google Scholar 

  34. 34

    Coles, D. M. et al. Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity. Nat. Mater. 13, 712–719 (2014).

    CAS  Article  Google Scholar 

  35. 35

    Nikiforov, G. O. et al. Current-induced joule heating and electrical field effects in low temperature measurements on TIPS pentacene thin film transistors. Adv. Electron. Mater. 2, 1600163 (2016).

    Article  Google Scholar 

  36. 36

    Balandin, A. A. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569–581 (2011).

    CAS  Article  Google Scholar 

  37. 37

    Tischler, J. R., Bradley, M. S., Bulović, V., Song, J. H. & Nurmikko, A. Strong coupling in a microcavity LED. Phys. Rev. Lett. 95, 036401 (2005).

    Article  Google Scholar 

  38. 38

    Jakubka, F., Grimm, S. B., Zakharko, Y., Gannott, F. & Zaumseil, J. Trion electroluminescence from semiconducting carbon nanotubes. ACS Nano 8, 8477–8486 (2014).

    CAS  Article  Google Scholar 

  39. 39

    Hartleb, H., Späth, F. & Hertel, T. Evidence for strong electronic correlations in the spectra of gate-doped single-wall carbon nanotubes. ACS Nano 9, 10461–10470 (2015).

    CAS  Article  Google Scholar 

  40. 40

    Lidzey, D. G. et al. Strong exciton-photon coupling in an organic semiconductor microcavity. Nature 395, 53–55 (1998).

    CAS  Article  Google Scholar 

  41. 41

    Rapaport, R. et al. Negatively charged quantum well polaritons in a GaAs/AlAs microcavity: an analog of atoms in a cavity. Phys. Rev. Lett. 84, 1607–1610 (2000).

    CAS  Article  Google Scholar 

  42. 42

    Rapaport, R., Cohen, E., Ron, A., Linder, E. & Pfeiffer, L. N. Negatively charged polaritons in a semiconductor microcavity. Phys. Rev. B 63, 235310 (2001).

    Article  Google Scholar 

  43. 43

    Sidler, M. et al. Fermi polaron-polaritons in charge-tunable atomically thin semiconductors. Nat. Phys. 13, 255–261 (2016).

    Article  Google Scholar 

  44. 44

    Laussy, F. P., Kavokin, A. V. & Shelykh, I. A. Exciton-polariton mediated superconductivity. Phys. Rev. Lett. 104, 106402 (2010).

    Article  Google Scholar 

  45. 45

    Malpuech, G. et al. Polariton lasing due to the exciton-electron scattering in semiconductor microcavities. Phys. Status Solidi 190, 181–186 (2002).

    CAS  Article  Google Scholar 

  46. 46

    Venkateshvaran, D. et al. Approaching disorder-free transport in high-mobility conjugated polymers. Nature 515, 384–388 (2014).

    CAS  Article  Google Scholar 

  47. 47

    Bajoni, D. Polariton lasers. Hybrid light–matter lasers without inversion. J. Phys. D 45, 313001 (2012).

    Article  Google Scholar 

  48. 48

    Liu, X. et al. Strong light–matter coupling in two-dimensional atomic crystals. Nat. Photon. 9, 30–34 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement No. 306298 (EN-LUMINATE) and under the European Union’s Horizon 2020 Framework Programme (FP/2014-2020)/ERC Grant Agreement No. 640012 (ABLASE) and by the Scottish Funding Council (through SUPA). L.T. thanks the EPSRC for support through the CM-DTC (EP/L015110/1). J.Z. thanks the Alfried Krupp von Bohlen und Halbach-Stiftung via the ‘Alfried Krupp Förderpreis für junge Hochschullehrer’ for general support.

Author information

Affiliations

Authors

Contributions

A.G. and M.H. performed the experiments, simulations and analysed the data. Y.Z. assisted with interpretation and data analysis. L.T. contributed to the simulations. A.G., M.C.G. and J.Z. jointly wrote the manuscript. M.C.G. and J.Z. conceived and supervised the project. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Malte C. Gather or Jana Zaumseil.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2749 kb)

Supplementary Movie

Supplementary Movie (AVI 17871 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Graf, A., Held, M., Zakharko, Y. et al. Electrical pumping and tuning of exciton-polaritons in carbon nanotube microcavities. Nature Mater 16, 911–917 (2017). https://doi.org/10.1038/nmat4940

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing