Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Polymer ultrapermeability from the inefficient packing of 2D chains

Abstract

The promise of ultrapermeable polymers, such as poly(trimethylsilylpropyne) (PTMSP), for reducing the size and increasing the efficiency of membranes for gas separations remains unfulfilled due to their poor selectivity. We report an ultrapermeable polymer of intrinsic microporosity (PIM-TMN-Trip) that is substantially more selective than PTMSP. From molecular simulations and experimental measurement we find that the inefficient packing of the two-dimensional (2D) chains of PIM-TMN-Trip generates a high concentration of both small (<0.7 nm) and large (0.7–1.0 nm) micropores, the former enhancing selectivity and the latter permeability. Gas permeability data for PIM-TMN-Trip surpass the 2008 Robeson upper bounds for O2/N2, H2/N2, CO2/N2, H2/CH4 and CO2/CH4, with the potential for biogas purification and carbon capture demonstrated for relevant gas mixtures. Comparisons between PIM-TMN-Trip and structurally similar polymers with three-dimensional (3D) contorted chains confirm that its additional intrinsic microporosity is generated from the awkward packing of its 2D polymer chains in a 3D amorphous solid. This strategy of shape-directed packing of chains of microporous polymers may be applied to other rigid polymers for gas separations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A comparison of the macromolecular chain structures of PIM-TMN-Trip and PIM-TMN-SBI and their packing.
Figure 2: Data from the physical characterization of PIM-TMN-Trip (red) and PIM-TMN-SBI (blue).
Figure 3: High permeability regions of Robeson plots for important gas pairs.

Similar content being viewed by others

References

  1. Baker, R. W. & Low, B. T. Gas separation membrane materials: a perspective. Macromolecules 47, 6999–7013 (2014).

    Article  CAS  Google Scholar 

  2. Bernardo, P., Drioli, E. & Golemme, G. Membrane gas separation: a review/state of the art. Ind. Eng. Chem. Res. 48, 4638–4663 (2009).

    Article  CAS  Google Scholar 

  3. Du, N. Y., Park, H. B., Dal-Cin, M. M. & Guiver, M. D. Advances in high permeability polymeric membrane materials for CO2 separations. Energy Envron. Sci. 5, 7306–7322 (2012).

    Article  CAS  Google Scholar 

  4. Budd, P. M. & McKeown, N. B. Highly permeable polymers for gas separation membranes. Polym. Chem. 1, 63–68 (2010).

    Article  CAS  Google Scholar 

  5. Wang, S. F. et al. Advances in high permeability polymer-based membrane materials for CO2 separations. Energy Envron. Sci. 9, 1863–1890 (2016).

    Article  CAS  Google Scholar 

  6. Masuda, T., Isobe, E., Higashimura, T. & Takada, K. Poly 1-(trimethylsilyl)-1-propyne—a new high polymer synthesized with transition-metal catalysts and characterized by extremely high gas-permeability. J. Am. Chem. Soc. 105, 7473–7474 (1983).

    Article  CAS  Google Scholar 

  7. Hu, Y., Shiotsuki, M., Sanda, F., Freeman, B. D. & Masuda, T. Synthesis and properties of indan-based polyacetylenes that feature the highest gas permeability among all the existing polymers. Macromolecules 41, 8525–8532 (2008).

    Article  CAS  Google Scholar 

  8. Shiotsuki, M., Sanda, F. & Masuda, T. Polymerization of substituted acetylenes and features of the formed polymers. Polym. Chem. 2, 1044–1058 (2011).

    Article  CAS  Google Scholar 

  9. Wang, X.-Y., Hill, A. J., Freeman, B. D. & Sanchez, I. C. Structural, sorption and transport characteristics of an ultrapermeable polymer. J. Membr. Sci. 314, 15–23 (2008).

    Article  CAS  Google Scholar 

  10. Budd, P. M. et al. Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials. Chem. Commun. 230–231 (2004).

  11. Budd, P. M. et al. Gas permeation parameters and other physicochemical properties of a polymer of intrinsic microporosity: polybenzodioxane PIM-1. J. Membr. Sci. 325, 851–860 (2008).

    Article  CAS  Google Scholar 

  12. Budd, P. M. et al. Gas separation membranes from polymers of intrinsic microporosity. J. Membr. Sci. 251, 263–269 (2005).

    Article  CAS  Google Scholar 

  13. Kim, S. & Lee, Y. M. Rigid and microporous polymers for gas separation membranes. Prog. Polym. Sci. 43, 1–32 (2015).

    Article  CAS  Google Scholar 

  14. Rose, I. et al. Highly permeable benzotriptycene-based polymer of intrinsic microporosity. ACS Macro Lett. 4, 912–915 (2015).

    Article  CAS  Google Scholar 

  15. Zhang, J. et al. The enhancement of chain rigidity and gas transport performance of polymers of intrinsic microporosity via intramolecular locking of the spiro-carbon. Chem. Commun. 52, 6553–6556 (2016).

    Article  CAS  Google Scholar 

  16. Carta, M. et al. Triptycene induced enhancement of membrane gas selectivity for microporous Troger’s base polymers. Adv. Mater. 26, 3526–3531 (2014).

    Article  CAS  Google Scholar 

  17. Ghanem, B. S., Swaidan, R., Litwiller, E. & Pinnau, I. Ultra-microporous triptycene-based polyimide membranes for high-performance gas separation. Adv. Mater. 26, 3688–3692 (2014).

    Article  CAS  Google Scholar 

  18. Ghanem, B. S., Swaidan, R., Ma, X. H., Litwiller, E. & Pinnau, I. Energy-efficient hydrogen separation by AB-type ladder-polymer molecular sieves. Adv. Mater. 26, 6696–6700 (2014).

    Article  CAS  Google Scholar 

  19. Carta, M. et al. An efficient polymer molecular sieve for membrane gas separations. Science 339, 303–307 (2013).

    Article  CAS  Google Scholar 

  20. Swaidan, R., Ghanem, B. & Pinnau, I. Fine-tuned intrinsically ultramicroporous polymers redefine the permeability/selectivity upper bounds of membrane-based air and hydrogen separations. ACS Macro Lett. 4, 947–951 (2015).

    Article  CAS  Google Scholar 

  21. Kahveci, Z., Islamoglu, T., Shar, G. A., Ding, R. & El-Kaderi, H. M. Targeted synthesis of a mesoporous triptycene-derived covalent organic framework. CrystEngComm 15, 1524–1527 (2013).

    Article  CAS  Google Scholar 

  22. Kissel, P., Murray, D. J., Wulftange, W. J., Catalano, V. J. & King, B. T. A nanoporous two-dimensional polymer by single-crystal-to-single-crystal photopolymerization. Nat. Chem. 6, 774–778 (2014).

    Article  CAS  Google Scholar 

  23. Murray, D. J. et al. Large area synthesis of a nanoporous two-dimensional polymer at the air/water interface. J. Am. Chem. Soc. 137, 3450–3453 (2015).

    Article  CAS  Google Scholar 

  24. Ghanem, B. et al. A triptycene-based polymer of intrinsic microposity that displays enhanced surface area and hydrogen adsorption. Chem. Commun. 67–69 (2007).

  25. Ghanem, B. S. et al. Triptycene-based polymers of intrinsic microporosity: organic materials that can be tailored for gas adsorption. Macromolecules 43, 5287–5294 (2010).

    Article  CAS  Google Scholar 

  26. Thomas, S. W. et al. Perpendicular organization of macromolecules: synthesis and alignment studies of a soluble poly(iptycene). J. Am. Chem. Soc. 127, 17976–17977 (2005).

    Article  CAS  Google Scholar 

  27. Zang, Y. et al. Two-dimensional and related polymers: concepts, synthesis, and their potential application as separation membrane materials. Polym. Rev. 55, 57–89 (2015).

    Article  CAS  Google Scholar 

  28. Colson, J. W. & Dichtel, W. R. Rationally synthesized two-dimensional polymers. Nat. Chem. 5, 453–465 (2013).

    Article  CAS  Google Scholar 

  29. Payamyar, P., King, B. T., Ottinger, H. C. & Schluter, A. D. Two-dimensional polymers: concepts and perspectives. Chem. Commun. 52, 18–34 (2016).

    Article  CAS  Google Scholar 

  30. Zhuang, X., Mai, Y., Wu, D., Zhang, F. & Feng, X. Two-dimensional soft nanomaterials: a fascinating world of materials. Adv. Mater. 27, 403–427 (2015).

    Article  CAS  Google Scholar 

  31. Taylor, R. G. D. et al. The synthesis of organic molecules of intrinsic microporosity designed to frustrate efficient molecular packing. Chem. Eur. J. 22, 2466–2472 (2016).

    Article  CAS  Google Scholar 

  32. Abbott, L. J., Hart, K. E. & Colina, C. M. Polymatic: a generalized simulated polymerization algorithm for amorphous polymers. Theor. Chem. Acc. 132, 1334 (2013).

    Article  Google Scholar 

  33. Larsen, G. S., Lin, P., Hart, K. E. & Colina, C. M. Molecular simulations of PIM-1-like polymers of intrinsic microporosity. Macromolecules 44, 6944–6951 (2011).

    Article  CAS  Google Scholar 

  34. Srinivasan, R., Auvil, S. R. & Burban, P. M. Elucidating the mechanism(s) of gas-transport in poly 1-(trimethylsilyl)-1-propyne (PTMSP) membranes. J. Membr. Sci. 86, 67–86 (1994).

    Article  CAS  Google Scholar 

  35. Ichiraku, Y., Stern, S. A. & Nakagawa, T. An investigation of the high gas-permeability of poly (1-trimethylsilyl-1-propyne). J. Membr. Sci. 34, 5–18 (1987).

    Article  CAS  Google Scholar 

  36. Merkel, T. C., Bondar, V., Nagai, K. & Freeman, B. D. Sorption and transport of hydrocarbon and perfluorocarbon gases in poly(1-trimethylsilyl-1-propyne). J. Polym. Sci. B 38, 273–296 (2000).

    Article  CAS  Google Scholar 

  37. Nakagawa, T., Saito, T., Asakawa, S. & Saitoh, Y. Polyacetylene derivatives as membranes for gas separation. Gas Sep. Purif. 2, 3–8 (1988).

    Article  CAS  Google Scholar 

  38. Robeson, L. M. The upper bound revisited. J. Membr. Sci. 320, 390–400 (2008).

    Article  CAS  Google Scholar 

  39. Jue, M. L., Breedveld, V. & Lively, R. P. Defect-free PIM-1 hollow fiber membranes. J. Membr. Sci. 530, 33–41 (2017).

    Article  CAS  Google Scholar 

  40. Swaidan, R., Ghanem, B., Litwiller, E. & Pinnau, I. Physical aging, plasticization and their effects on gas permeation in ‘rigid’ polymers of intrinsic microporosity. Macromolecules 48, 6553–6561 (2015).

    Article  CAS  Google Scholar 

  41. Nagai, K., Masuda, T., Nakagawa, T., Freeman, B. D. & Pinnau, I. Poly 1-(trimethylsilyl)-1-propyne and related polymers: synthesis, properties and functions. Prog. Polym. Sci. 26, 721–798 (2001).

    Article  CAS  Google Scholar 

  42. Merkel, T. C., Gupta, R. P., Turk, B. S. & Freeman, B. D. Mixed-gas permeation of syngas components in poly(dimethylsiloxane) and poly(1-trimethylsilyl-1-propyne) at elevated temperatures. J. Membr. Sci. 191, 85–94 (2001).

    Article  CAS  Google Scholar 

  43. Takada, K., Matsuya, H., Masuda, T. & Higashimura, T. Gas-permeability of polyacetylenes carrying substituents. J. Appl. Polym. Sci. 30, 1605–1616 (1985).

    Article  CAS  Google Scholar 

  44. Morliere, N., Vallieres, C., Perrin, L. & Roizard, D. Impact of thermal ageing on sorption and diffusion properties of PTMSP. J. Membr. Sci. 270, 123–131 (2006).

    Article  CAS  Google Scholar 

  45. Tsuchihara, K., Masuda, T. & Higashimura, T. Polymerization of silicon-containing diphenylacetylenes and high gas-permeability of the product polymers. Macromolecules 25, 5816–5820 (1992).

    Article  CAS  Google Scholar 

  46. Nguyen, P. T. et al. A dense membrane contactor for intensified CO2 gas/liquid absorption in post-combustion capture. J. Membr. Sci. 377, 261–272 (2011).

    Article  CAS  Google Scholar 

  47. Dibrov, G. A. et al. Robust high-permeance PTMSP composite membranes for CO2 membrane gas desorption at elevated temperatures and pressures. J. Membr. Sci. 470, 439–450 (2014).

    Article  CAS  Google Scholar 

  48. Pinnau, I. & Toy, L. G. Transport of organic vapors through poly(1-trimethylsilyl-1-propyne). J. Membr. Sci. 116, 199–209 (1996).

    Article  CAS  Google Scholar 

  49. Raharjo, R. D., Freeman, B. D., Paul, D. R. & Sanders, E. S. Pure and mixed gas CH4 and n-C4H10 permeability and diffusivity in poly(1-trimethylsilyl-1-propyne). Polymer 48, 7329–7344 (2007).

    Article  CAS  Google Scholar 

  50. Fadeev, A. G. et al. Extraction of butanol from aqueous solutions by pervaporation through poly(1-trimethylsilyl-1-propyne). J. Membr. Sci. 186, 205–217 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the Horizon 2020/FP7 Framework Program under grant agreement no. 608490, project M4CO2 and from the EPSRC (UK) grant numbers EP/M01486X/1 and EP/K008102/2. This work was also supported by the US National Science Foundation (DMR-1604376) and the Leverhulme Trust, UK (RPG-2014-308). High-performance computational resources were provided by the University of Florida Research Computing and the Research Computing and Cyberinfrastructure unit at Pennsylvania State University.

Author information

Authors and Affiliations

Authors

Contributions

I.R. prepared PIM-TMN-Trip. C.G.B. prepared PIM-TMN-SBI and performed the crystallographic study of the monomers. M.C. prepared the films for gas permeability and coordinated the experimental part of the project. B.C.G. verified the synthesis of PIM-TMN-Trip and performed the WAXS analysis. E.L. performed the high-temperature gas permeability measurements. M.C.F. performed the gas adsorption measurements and Horvath–Kawazoe analysis of pore-size distribution and designed the high-temperature gas permeability experiments. P.B. designed and performed the film conditioning protocol and carried out the elaboration of the single-gas permeability data to evaluate the transport parameters (Table 1: data series 1–5, 8–10). C.G. performed the single gas permeability measurements (Table 1: data series 1–5, 8–10), A.F. performed the single gas permeability measurements (Table 1: data series 6) and the elaboration of the data. J.C.J. performed the mixed gas experiments, the density and tensile strength analysis and supervised the gas permeability work and data elaboration. K.E.H. devised the methodology for simulation and analysis of the chain packing of PIMs related to PIM-TMN-SBI. T.P.L.A. performed the simulation and analysis of the chain packing of PIM-TMN-Trip. C.M.C. designed and supervised the chain-packing simulation work. N.B.M. designed the polymers and prepared the manuscript with input from all of the other authors.

Corresponding author

Correspondence to Neil B. McKeown.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1787 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rose, I., Bezzu, C., Carta, M. et al. Polymer ultrapermeability from the inefficient packing of 2D chains. Nature Mater 16, 932–937 (2017). https://doi.org/10.1038/nmat4939

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4939

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing